Depth CNNs for RGB-D Scene Recognition: Learning From Scratch
Better Than Transferring From RGB-CNNSs
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. Introduction » Two-step learning of depth CNNs combining weakly supervised pre-training and fine tuning

e . . .. - Weakly—supervised training with patches
U Limitations of RGB-D scene recognition
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 Depth images are difficult to capture, lacking depth
images for CNN training;

* Transferring/fine tuning from RGB to depth may not
capture the depth-specific visual patterns, due to the
large differences between the RGB and depth modality. 3
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* Training depth-specific CNN model with the limited
depth training images rather than transferring/fine
tuning from RGB pre-trained CNN model.

U Contributions

* Analyze the large differences between RGB and depth
modalities in CNN training;

pooling 256

Train depth-specific CNN from scratch with weakly-
supervised pre-training, outperforming transferring
from RGB.
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; Fine tuning

Insight from convl layer « Experimental results

* Fine tuning from RGB to depth
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(a)F T-top: only top layers, bottom layers are frozen;
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Table.1 Accuracy of depth recognition on

SUN RGB-D
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Method

Acc.(%)
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FT-Places-CNN

Proposed

D-CNN

D-CNN (wSVM)

41.2
42.4

-I 13 N

State-of-
the-art

R-CNN+FV(Wang et al. 2016)
FT-PL(Wang et al. 2016)

FT-PL+SPP

FT-PL+SPP (WSVM)

34.6
37.5
37.7
38.9

FT: Fine tuned, PL: Places-CNN

(b)FT-bottom: only bottom layers, top layers are frozen;
(c)F T-keep: bottom layers (top layers retrained and some
convolutional layers removed).

Each column represents a particular setting.

from scratch (weak-supervision) weakly-supervised

Table.2 Comparisons of RGB-D data on SUN RGB-D

Method CNN models Acc.(%)
RGB Depth
PL PL
FT-PL FT-PL
FT-PL FT-PL
Cat FT-PL D-CNN
Cat(wSVM) FT-PL D-CNN
State-of- (Zhu, Welbel, and Lu 2016)
the-art (Wang et al. 2016)
FT: Fine tuned, PL: Places-CNN, Cat: concatenation
 We release our (SUN RGB-D dataset) pre-trained models of
WSP-CNN and D-CNN in https://github.com/songxinhang/D-

CNN. Note that the WSP-CNN can be efficiently fine tuned to
other RGB-D datasets, e.g., NYUZ2.

* Only a few particular filters have noticeable changes
during the fine tuning process,;
* Training from scratch results noisy filters.

Cat
Cat
Cat(wSVM)

39.1
45.4
46.9
50.9
52.4
41.5
48.1
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(a)Train-scratch: train from scratch; 26
(b)WSP: Weakly-Supervised training with Patches;
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Layers

Only fine tuning bottom 3 layers works similar to all
layers;
Architectures with 3 layers work better.

c)F T-WSP: fine-tuned with images after weakly supervised
raining with patches.



https://github.com/songxinhang/D-CNN

