DANICE: Domain adaptation without forgetting in neural image compression

Sudeep Katakol^{1,(2)}, Luis Herranz^{2,3}, Fei Yang^{2,3,4}, Marta Mrak⁵

¹University of Michigan, Ann Arbor, ²Computer Vision Center, ³Universitat Autònoma de Barcelona, ⁴Northwestern Politechnical University, ⁵BBC R&D

CLIC 2021 (@CVPR 2021)

B Universitat Autònoma de Barcelona

🖸 | Research & Development

Developing traditional image/video codecs

Practical objectives

- Variable rate
- Low memory
- Low computation
- Low latency

Other practical considerations

- Domain-specific codecs (e.g. videoconf., screencast)
- Backward/forward compatibility with legacy formats and encoders/decoders

Neural image/video codecs

Coding tools and syntax are parametric and learned
Encoders/decoders are deep neural networks

Neural image compression

Compressive autoencoder (CAE) [Theis2017, Balle2017] (autoencoder+quantization+entropy coding)

Neural image compression

Training data $\mathcal{X}^{\mathrm{tr}}$

Practical considerations in neural image compression

Main objectives

- Minimize rate
- Minimize distortion

Practical objectives

- Variable rate
- Low memory
- Low computation
- Low latency

Check our paper <u>SlimCAE</u> [CVPR2021] Other practical considerations (this work)

- Domain-specific codecs
 - (e.g. videoconference, screencast)
 - Backward/forward compatibility (with legacy formats and encoders/decoders)

Rate-distortion optimality of learned codecs

Learned codecs are only optimal in the domain of the training data

Domain Adaptation in Neural Image ComprEssion (DANICE)

Learned codecs can be customized with user content to specific domains Problem: usually we don't have enough custom data; training is expensive Solution: transfer pre-trained codecs

Domain adaptation via fine tuning

	$CLIC \rightarrow CelebA$			$CLIC \rightarrow Cityscapes$			
Source model	19.24			23.93			
Number of	Naïve		Selective	Naïve		Selective	
target images	fine tuning		fine tuning	fine tuning		fine tuning	
10	19.24		16.46	22.96		17.54	
25	18.76		14.93	18.44		15.79	
50	15.59		13.73	16.29		15.33	

Experiments

BD-rate (reference: training with all target data)

Domain adaptation via fine tuning

Backward incompatibility with legacy bitstreams: catastrophic forgetting

Misalignment between encoding-decoding latent spaces (i.e. bitstream syntax incompatible)

Rate-distortion forgetting

Codec adaptation without forgetting (CAwF)

Freeze source codec, and learn target codec as an enhancement layer Drawback: adds additional parameters

Codec adaptation without forgetting (CAwF)

Codec adaptation without forgetting (CAwF)

CelebA→Cityscapes (source domain)

Adaptation artifacts

Thanks!

https://arxiv.org/abs/2103.15726

Sudeep Katakol

Luis Herranz

Fei Yang

Marta Mrak

BBC | Research & Development