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Developing traditional image/video codecs
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Main objectives
- Minimize rate
- Minimize distortion

Practical objectives
- Variable rate
- Low memory
- Low computation
- Low latency

Other practical considerations
- Domain-specific codecs (e.g. videoconf., screencast)
- Backward/forward compatibility with legacy 

formats and encoders/decoders



Neural image/video codecs
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- Coding tools and syntax are parametric and learned
- Encoders/decoders are deep neural networks



Neural image compression
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Neural image compression
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Practical considerations in 
neural image compression
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Main objectives
- Minimize rate
- Minimize distortion

Practical objectives
- Variable rate
- Low memory
- Low computation
- Low latency

Check our paper 
SlimCAE [CVPR2021]

Other practical considerations (this work)
- Domain-specific codecs

(e.g. videoconference, screencast)
- Backward/forward compatibility (with 

legacy formats and encoders/decoders)

https://arxiv.org/abs/2103.15726


Learned codecs are only optimal in the domain of the training data
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Domain Adaptation in Neural Image ComprEssion
(DANICE)

Learned codecs can be customized with user content to specific domains
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Problem: usually we don’t have enough custom data; training is expensive
Solution: transfer pre-trained codecs



Domain adaptation via fine tuning
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Domain adaptation via fine tuning
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Misalignment between encoding-decoding latent spaces
(i.e. bitstream syntax incompatible)
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Backward incompatibility with legacy 
bitstreams: catastrophic forgetting
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Encoding-decoding latent spaces aligned, but suboptimal
(i.e. bitstream syntax compatible, yet degraded)
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Freeze source codec, and learn target codec as an enhancement layer
Drawback: adds additional parameters
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Codec adaptation without forgetting (CAwF)
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Codec adaptation without forgetting (CAwF)
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Codec adaptation without forgetting (CAwF)
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Thanks!

https://arxiv.org/abs/2103.15726
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