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ABSTRACT

The task of unpaired image-to-image translation is highly challenging due to the lack of explicit
cross-domain pairs of instances. We consider here diverse image translation (DIT), an even
more challenging setting in which an image can have multiple plausible translations. This is
normally achieved by explicitly disentangling content and style in the latent representation
and sampling different styles codes while maintaining the image content. Despite the success
of current DIT models, they are prone to suffer from bias. In this paper, we study the problem
of bias in image-to-image translation. Biased datasets may add undesired changes (e.g. change
gender or race in face images) to the output translations as a consequence of the particular
underlying visual distribution in the target domain. In order to alleviate the effects of this
problem we propose the use of semantic constraints that enforce the preservation of desired
image properties. Our proposed model is a step towards unbiased diverse image-to-image
translation (UDIT), and results in less unwanted changes in the translated images while still
performing the wanted transformation. Experiments on several heavily biased datasets show
the effectiveness of the proposed techniques in different domains such as faces, objects, and

scenes.

(© 2024 Elsevier Ltd. All rights reserved.

1. Introduction

Image-to-image translation (simply image translation
hereinafter) is a powerful framework to apply complex
data-driven transformations to images [16, 22, 26, 27, 48,
46]. The transformation is determined by the data col-
lected from the input and output domains, which can be
arranged as explicit input-output instance pairs [22] or just
the looser pairing at set level [26, 31, 48, 56], known as
paired and unpaired image translation, respectively.

Early image translation methods were deterministic in
the sense that same input image is always translated to
the same output image. However, a single input image
often can have multiple plausible output images, allowing
for variations in color, texture, illumination, etc. Recent
approaches allow for diversity! in the output [21, 27, 57] by
formulating image translation as a mapping from an input
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In some papers this is referred to as multimodal, in the sense
that the output distribution can have multiple modes.

image to a (conditional) output distribution (see Fig. 1a),
where a particular output is sampled from that distribu-
tion. In practice, the sampling is performed in the latent
representation that is the input of the generator, which
is explicitly disentangled into content representation and
style representation [27, 57]. Concretely, the style code is
sampled to achieve diversity in the output while preserving
the image content.

A concern with image translation models, and machine
learning models in general, is that they capture the in-
herent biases in the training datasets. The problem of
undesired bias in data is paramount in deep learning, rais-
ing concerns in multiple communities as automation and
artificial intelligence become pervasive in their interaction
with humans, such as systems involving analyzing face or
person images, or communication in natural language. For
example, it is known that most face recognition systems
suffer from gender and racial bias [8]. Similar gender bias
is observed in image captioning [18]. Here we focus on the
kind of biases that may affect image translation systems.
Although bias is inherent to data collection, it is certainly
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Fig. 1: Diverse image-to-image translation in a very biased set-
ting (domain A: mostly white males without makeup, domain
B: white females with makeup): (a) biased translations, (b)
with semantic constraint to alleviate bias while keeping rele-
vant diversity.

possible to design better and more balanced datasets, or
at least understand the related biases, their nature and try
to incorporate tools to alleviate them [20, 23, 54, 58].

What particular visual and semantic properties of the
input image are changed during the translation is deter-
mined by the internal and relative biases between the in-
put and output training sets. These biases have significant
impact on the diversity and potential unwanted changes,
such as changing the gender, race or identity of a particular
input face image. As an example we can consider the in-
put domain faces without makeup and the output domain
faces with makeup, so we expect that the image transla-
tor learns to add makeup to a face. However, the input
training set may be heavily biased towards males without
makeup, and the output training set towards females with
makeup?. With such biases, the translator learns to gen-
erate female faces with makeup even when the input is a
male face (see Fig. 1la). While the change in the makeup
attribute is desired, the change in identity and gender are
not.

In this paper we propose to make the image transla-
tor counter undesired biases, by incorporating semantic
constraints that enforce minimizing the undesired changes
(e.g. see Fig. 1b when constraining the identity, which im-
plicitly constrains gender). These constraints are imple-
mented as neural networks that extract relevant semantic
features. Designing an adequate semantic constraint is
often not trivial, and naive implementations may carry ir-
relevant information. This often leads to undesired side
effects such as ineffective bias compensation and limiting
the desired diversity in the output. Here we address these
issues and propose an approach to design an effective se-
mantic constraint that both alleviates bias and preserves
desired diversity.

2In addition to biases towards white and young people, we do
not consider other specific biases in this example for the sake of
simplicity.

2. Related Work

Image-to-image translation has recently received ex-
ceptional attention due to its excellent results and its
great versatility to solve multiple computer vision prob-
lems (7, 21, 22, 28, 32, 52, 56, 57]. Most image transla-
tion approaches employ conditional Generative Adversar-
ial Networks (GANSs) [17], which consist of two networks,
the generator and the discriminator, that compete against
each other. The generator attempts to generate samples
that resemble the original input distribution, while the
discriminator tries to detect whether samples are real or
originate from the generator. In the case of image transla-
tion, this generative process is conditioned on an input
image. The seminal work of Isola et al. [22], pix2pix,
was the first GAN-based image translation approach that
was not specialized to a particular task. In spite of the
exceptional results on multiple translation tasks such as
grayscale to color images or edges to real images, this
approach is limited by the requirement of pairs of cor-
responding images in both domains, which are expensive
to obtain and might not even exist for particular tasks.
Several methods [26, 31, 43, 48, 56] have extended pix2pix
to the unpaired setting by introducing a cycle consistency
loss, which assumes that mapping an image to the target
domain and then translating it back to the source should
leave it unaltered.

Some papers focus on makeup for the human face.
UGAN [55] aims to erase source-specific characteristics
and boost the characteristics specific to the target. Zhang
et al. [51] focuses on generating diverse makeup faces given
single input. In a similar spirit, BeautyGAN [30] proposed
both global and local losses to improve the translation be-
tween women without makeup and women with makeup,
but the loss computaion relies on the guidance of a face
mask output by a face parsing model [47]. Finally, Paired-
CycleGAN [9] only adds makeup to women at training
time.

Diversity in image-to-image translation. A limi-
tation of the above image translation models is that they
do not model the inherent diversity of the target distri-
bution (e.g. same shoe can come in different colors). For
example, pix2pix [22] tries to generate diverse outputs by
including noise alongside the input image, but this noise is
largely ignored by the model and the output is effectively
deterministic. BicycleGAN [57] proposed to overcome this
limitation by adding the reconstruction of the latent in-
put code as a side task, thus forcing the generator to take
noise into account and create diverse outputs. Bicycle-
GAN still requires paired data. In the unpaired setting,
several recent works [1, 21, 27] address unpaired diverse
image translation. Our approach falls into this category as
it does not need paired data and it outputs diverse trans-
lations. Our work is closest to MUNIT [21], which divides
the latent space into a shared part across domains and
a part specific to each domain. However, these methods
output too much diversity in some cases, which results in
the undesired change of image content that should be pre-



Fig. 2: Examples of training sets for image translation: (a)
paired edge-photo, (b) unpaired young-old (well-aligned bi-
ases), and (c) unpaired without-with makeup (misaligned in
gender).

served by the model (e.g. identity, race). Moreover, such
changes are often determined by the underlying bias in
the dataset, which MUNIT captures and amplifies during
translation.

Disentangled representations. While DIT methods
explicitly disentangle content and style to enable diver-
sity, other methods attempt to obtain disentangled rep-
resentations to isolate different factors of variation in im-
ages [3], which is beneficial for tasks such as cross-domain
classification [5, 6, 15, 33] or retrieval [16]. In the con-
text of generative models, Mathieu et al. [34] combined a
GAN with a Variational Autoencoder (VAE) to obtain an
internal representation that is disentangled across speci-
fied (e.g. labels) and unspecified factors. InfoGAN [11]
achieves some control over the variation factors in images
by optimizing a lower bound on the mutual information be-
tween images and their representations. Some approaches
impose a particular structure in the learned image mani-
fold, either by representing each factor of variation as a dif-
ferent sub-manifold [37] or by solving analogical relation-
ships through representation arithmetic [38]. The work
of [16] achieves cross-domain disentanglement by separat-
ing the internal representation into a shared part across
domains and domain-exclusive parts, which contain the
factors of variation of each domain. In our case we assume
we do not have access to disentangled representations be-
yond content and style, and especially between wanted and
unwanted changes.

Bias in machine learning datasets. Since ma-
chine learning is mostly fitting predictive models to data,
the problem of biased training data is of great relevance.
Dataset bias in general refers to the observation that mod-
els trained in one dataset may lead to poor generaliza-
tion when evaluated on other datasets, due to the spe-
cific bias in each of them [45]. Bias is multifaceted, and
datasets can be biased in many ways (e.g. illumination
conditions, capture devices, class imbalance, scale [19]).
Dataset bias can be addressed and improve cross-dataset
generalization [14, 24]. A related problem is domain adap-
tation [13, 36] where models trained on a source domain
are adapted to a target domain, trying to overcome the dif-
ference in biases. Biased datasets lead to biased models,
which have severe implications as data-driven artificial in-
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telligence becomes pervasive. For instance, most commer-
cial face recognition and image captioning systems exhibit
gender and ethnicity biases [8, 18]. Therefore, tackling
bias is an increasingly important topic in machine learn-
ing [20, 23, 54, 58]. Here we focus on the specific problem
of understanding bias in image translation.

3. Diverse image translation
3.1. Definition and Setup

Our goal is to translate samples from a source domain
A to a target domain B in an unpaired setting, i.e. with-
out corresponding images across domains. Let x4 € X4
be a sample from the marginal distribution of images in
the source domain, pa(z). We want to obtain a trans-
lation x4_.p to B, sampled from a conditional distribu-
tion pa—sp(x|z4) that approximates the true conditional
pp(z|z4). The difficulty of this task resides in the impossi-
bility to observe the joint distribution p4 g(za4,zp) in the
unpaired setting, and the complexity of the conditional
distribution pp(x|z4), which is generally multi-modal. Si-
multaneously, we want to obtain the inverse translation
TB—A-

Current unpaired diverse image translation methods [21,
27] use an encoder-decoder architecture, where the input
image is first encoded into a latent code and then later
decoded to generate the translated target image. These
methods resort to the assumption that part of the latent
space, the content, is shared by both domains, whereas
the style contains only the domain-specific characteris-
tics. Concretely, let us consider content encoders Ef and
style encoders Ef, where ¢ € {A, B} indexes over do-
mains. Then, the latent representation of an input im-
age x; can be decomposed into content ¢; = Ef(z;) and
style s; = E?(x;). Given that style is purely domain-
specific, we only need the particular content code ¢; for
translation, combined with a randomly sampled style code
s' ~ N(0,1), to generate the output image through the de-
coder G; as z;—,; = Gj(¢;, s).

Note that the decoders are deterministic functions that
act as inverses of the encoders (z; = G;(Ef(x;), Ef (x;)),
the stochasticity of the output translations is introduced
through the sampling of the style code, which is the source
of diversity on the generated translations (Fig. 4a).

3.2. Biases in diverse image translation

Wanted and unwanted properties. Images are com-
plex and diverse in nature, reflected at many levels, such
as visual appearance, structure and semantics. Therefore,
the dataset bias is also complex and multifaceted, and it
may be convenient to analyze separately specific biases
depending on specific semantic properties. Let a (w,u)
represent the relevant semantic properties associated with
an image = that are subject to change during translation,
with w being those we want to change (i.e. wanted), and u
being those we do not want to be changed (i.e. unwanted).
We assume that they can be obtained via the mappings
w = g (x) and u = h(z). For instance, in the example of
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Fig. 3: Geometric interpretation of the semantic constraint unbiasing
the translation.

Fig. 1, w is makeup and u is gender (for simplicity, but
more generally u could also include identity, race, etc.).
The distributions of images of the source domain ¢ and the
target domain j induce the corresponding distributions of
properties p; (w, u|z;) and p; (w,u|z;), respectively.

Translations in the space of properties. During
training, the image translator learns the mapping between
both domains, and consequently what properties to mod-
ify. An input image x; has the properties w; = g (z;) and
u; = h(z;), and the corresponding translation z;_,; will
have w;—; = ¢ (zi—;) and u;; = h(x;-;). The image
translation is successful if w;—; # w; is effectively the
wanted property of the target domain. Similarly, a trans-
lation is unbiased when u;_,; = u;. In general, DIT results
in biased translations when w;_,; # u; (see Fig. 3), which
stems from the original bias in the training dataset.

4. Unbiased diverse image translation

4.1. Unbiasing the generated images

For simplicity, let us consider the paired image transla-
tion case where a ground truth translation x; is available
for each z;, with the corresponding properties (w;,u;) =
g (z;). In order to learn a successful and unbiased trans-
lation we would like to enforce the constraints w;_,; = w;
and wu;_,; = u;, respectively.

However, we focus on the the more complex case of di-
verse image translation, where the output is stochastic, i.e.
a distribution rather than a single image. In this case the
constraints may not be enforced at the sample level but at
the distribution level. In the case of u we have

Uimsj = h (Tisj) (1)
u; = h(x;)
Ujsj = Uy

Vi ~ pinsj (@|2i) , Vo, ~ p; (2)

where u;,; = u; indicates that the unwanted properties
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remain unchanged throughout the translation. Similarly

Winsj = g (Tisj) (2)
wj = g (z;)
Wi—j = Wy

Vi ~ pisy (x]2s) , Vo, ~ pj (x]2;), Va; ~ pi (v)

where w;,; = w; indicates that the wanted proper-
ties change properly, according to the desired translation.
Note that for convenience we assume that the true condi-
tional distribution of the translation p; (x|z;) is known.

In this way, the biases in the distribution of generated
images would be aligned properly, achieving our goal of
removing unwanted biases in the translation (see Fig. 3).
In the previous example we would like the translated im-
ages to preserve the statistics of gender distribution of A
while adapting to the statistics of makeup distribution of
B. Similarly in the direction from B to A.

Note that the different settings in image translation im-
plicitly or explicitly enforce this sort of alignments via pair-
ing or the design of the dataset. For instance, Fig. 2a shows
an example of a dataset for paired translation, where the
instance-level pairing already prevents unwanted gender
bias (50% males and females). Gender bias can also be pre-
vented in unpaired translation by designing well-balanced
and statistically aligned training sets for domains A and
B (see Fig. 2b). However, Fig. 2c shows a dataset clearly
biased and misaligned on gender. In this case, it is desir-
able that the model can be forced to correct this unwanted
misalignment, to prevent biased translations.

In practice, directly enforcing the constraints to preserve
of unwanted properties and ensuring the desired change in
the wanted properties is not possible since w and u are
not disentangled in our setting. Besides, we do not have
access to p; (x|z;).

For this reason we propose to implement (4.1) via the
addition of a semantic regularization constraint that en-
forces the preservation of u properties during translation,
while constraint (4.1) is indirectly enforced via the image
translation loss. A bad implementation of the semantic
constraint can hamper the effectiveness of image transla-
tion in practice (e.g. limiting diversity), so the appropriate
design of the semantic constraint and its implementation
is related to both constraints.

4.2. Semantic regularization constraint

Here we propose an Unbiased DIT model (UDIT) that
enforces constraint (4.1) via a semantic extractor h that
estimates the representative semantic properties we want
to preserve in the image as u; = h(z;). Constraint (4.1)
on the wanted changes is implicitly enforced by the DIT
model, including the unpaired setting. Fig. 4b illustrates
how a proper semantic constraint regularizes the initial
DIT model to alleviate the unwanted bias.

In particular, we include a semantic constraint loss

U = Baipi () [|lting — will], (3)
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Fig. 4: Diverse image-to-image translation (DIT): (a) biased, (b)
unbiased (i.e. UDIT) via a semantic constraint implemented with a
semantic extractor.

where U represents the semantic properties we want to
keep unchanged throughout the translation. By including
Ly in our training objective (sec. 5.2), we are effectively
conditioning the output conditional distribution to U, i.e.
Piju(x|z;), and hence alleviating the unwanted bias in
the output samples z;_; ~ p;_,;u(x|r;), when U is prop-
erly designed. Fig. 4b shows the architecture of this UDIT.
Note how this constraint is only enforced during training,
we do not use u; during translation at inference time.

5. Implementing UDIT

Our UDIT framework consists of two parts: the seman-
tic extractor and the image-to-image translator.

5.1. Semantic extractor

Crucial for the success of our method is the proper de-
sign of the semantic extractor h (x), which in general will
be implemented as a neural network. We must guarantee
that the extracted feature contains enough relevant infor-
mation regarding the specific semantic property that we
want to preserve (i.e. captures u properly). On the other
hand, we want to prevent it from containing additional in-
formation that could potentially introduce undesired side
effect such as limiting the translation ability of the model
or the diversity on the output. We now develop a pro-
cedure to design effective semantic extractors that satisfy
both requirements.

Capturing the semantic property. As feature extrac-
tors, we consider convolutional neural networks (CNNs)
implementing classification tasks related with u (e.g. gen-
der classification), which we train on a suitable external
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dataset. The CNN may also be initialized with models
pretrained in large datasets (e.g. ImageNet [41], Deep-
Face [44]). In principle we are interested in a suitable
intermediate feature that captures w well. In particular,
the convolutional features that are input into the first fully
connected layer are often good candidates, as they contain
semantically meaningful information while still being spa-
tially localized.

Reducing undesired information. Deep features
from generic feature extractors such as models trained in
ImageNet capture rich and varied properties in a relatively
high dimensional feature. This can be harmful in our case,
since they can also capture properties unrelated with wu.
The classifier can learn to ignore them and still solve the
task, but they remain as noise in the semantic feature,
being enforced through the constraint and therefore limit-
ing the flexibility of the image translator to generate the
wanted change and diversity. In order to address this prob-
lem, we propose to add an additional convolutional layer
with a kernel 1 x 1 x D with the purpose of reducing the
dimensionality of the feature. We experimentally find the
minimum value of D that keeps a satisfactory accuracy.
The output of this additional layer is used as semantic
feature.

In summary, the designed features will ideally contain
the right amount of information relevant for the task, and
no irrelevant information that could interfere with the
wanted translation.

5.2. Image-to-image translator

The proposed unbiasing methodology is generic enough
to be applicable in most image-to-image translation meth-
ods. The UDIT models in our experiments are based
on MUNIT [21] extended with particular semantic con-
straints. The model is composed of within-domain autoen-
coders and cross-domains translators with reconstruction
of translated features. We also consider a variant that uses
pooling indices as side information [2].

In the following, we detail the remaining losses and
present our full model. The final loss consists of several
losses. The adversarial loss classifies the real data of target
domain from the synthesized data. The image reconstruc-
tion loss guarantees that the translated image keeps the
structure of the input image. Finally, the latent code re-
construction loss regularizes the latent code to preserve
both content and style information.

Adversarial loss. The translator attempts to generate
realistic images that fool the discriminator D;, whose task
is to distinguish fake images from real images. The dis-
criminator is trained adversarially with

CE]' 1
Lian = 5Eeimpi@),s~N 0D [(D;(Gj(ci, 8))?]

+ Ea:jij(:r) [(D] ('TJ) - 1)2] :

Image reconstruction loss. The autoencoders en-
sure that the model is able to reconstruct the input image
through the image reconstruction loss

(4)
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Latent code reconstruction loss. The translated
image is further encoded in both content and style, and
the following feature reconstruction losses are applied

LS con = Baypi (o), ~non [1E5 (G(ciy 8) —eill], (6)
= Eo,opi (), ~no |1 B (Gjleiy sT) = $'NI]. - (7)

‘Ciiecon
The loss on ¢; enforces the preservation of the content code
across domains, whereas the loss on the style encourages
diversity on the outputs.

Full Objective. The loss used to trained UDIT fol-
lows MUNIT’s loss combined with the semantic constraint
loss (3) as follows

L= g%N + :(Ef‘lN + AI(‘C‘fgcon + ‘cffcon)
)‘C<£1C”2con + Eac"gcon) + )‘S (‘ngcon + Eifcon) (8)
(Lt + L3P,

where the M., \¢, A, Ay weights control the influence of
each individual loss in the final objective. When Ay = 0 we
recover the baseline MUNIT model. We detail the network
architectures in the Appendix.

6. Experimental results

0.1. Datasets

We conduct experiments on four datasets that suffer
from different types of biases.

Biased makeup is our heavily biased dataset, where the
female gender predominates in the target domain. We col-
lected images of people with and without makeup from the
web. We retrieved 1,400 images of women with makeup by
searching for “woman makeup face” and manually verify-
ing them. For the no-makeup domain, we selected another
1400 images with 95% males faces and 5% female faces, so
we purposely biased this domain towards males. All im-
ages were preprocessed by cropping the face, localized by
a face detector.

MORPH [39] is also a face dataset for age translation
(young <« old) with both ethnicity and gender biases. It
contains 55,134 images of 13,000 subjects, and each image
is annotated with gender, ethnicity, and age. There are five
ethnic groups represented in the dataset: Black (African
ancestry), White (European ancestry), Hispanic, Asian,
and ‘Other’, which we discarded. MORPH is a face image
dataset for adult age progression, where the images depict
people of different ages at different points in time, span-
ning up to 30 years for some subjects. MORPH is heavily
biased towards men (>85%), and towards individuals with
African ancestry (>78%), followed by European (=17%),
Hispanic (~3.5%) and Asian (<0.3%) ancestries. We per-
form experiments using the identity constraint (sec. 6.5)
with the purpose of preserving both gender and ethnicity.

Cityscapes [12]—+Synthia [40] contains real and syn-
thesized urban scenes that are biased towards a particular

Domain A Domain B

1400 f-makeup
10000 m-y, 1000 f-y
3000 citys-day
755 flat-black
1256 flat-red

Experiment

1330 m-nomakeup, 70 f-nomakeup
10000 m-o, 1000 f-o
3000 syn-night, 300 syn-day
1000 txt-red, 100 flat-red
1100 txt-black, 100 txt-red

Biased makeup
MORPH
Cityscapes-Synthia
Handbags-color
Handbags-texture

Table 1: Details of datasets used for training the image translation
models. Abbreviations used: f=female, m=male, y=young, MOR-
PHo=old, citys=cityscapes, syn=synthia, txt=textured.

Domain A Domain B

100 f-makeup 100 m-nomakeup

200 m-y, 200 f-y 200 m-o, 200 f-o
475 citys-day -
100 flat-black -
100 flat-red -

Experiment

Biased makeup
MORPH
Cityscapes-Synthia
Handbags-color
Handbags-texture

Table 2: Details of datasets used for testing the image translation
models. Abbreviations used: f=female, m=male, y=young, o=old,
citys=cityscapes, syn=synthia, txt=textured.

time of the day (day/night). Cityscapes [12] contains real
street scenes captured from a moving vehicle during day-
time (3000 images). Synthia [40], instead, is synthetically
generated by a simulated car driving in a virtual world,
both during day-time and night-time. We artificially bias
the day-time/night-time distribution of Sytnhia by select-
ing 3000 images captured during night and only 300 images
during day.

Biased handbags [56] contains images of handbags
with two defining attributes: color (red/black) and tex-
ture (flat/textured). We select red and black as possible
colors. Texture is also a binary attribute indicating the ab-
sence or presence of a non-flat texture on the handbags, i.e.
flat or textured. We create two datasets by selecting sam-
ples from the photo images of the handbags dataset used
by [22, 21]. The input domain only contains one mode (e.g.
flat black handbags for Handbags-color), while the target
domain contains two modes but is heavily biased towards
one, e.g. 1000 textured red and 100 flat red. We note that
we require the textured handbags to only have the right
color (e.g. no stripes of another color), which limits the
attribute to subtle variations mostly given by differences
in the material.

Tables 1 and 2 specify the exact number of images used
in our biased datasets for training and testing, respectively.
Table 3 reports the setting to train the metric network.
Note for the biased makeup dataset, the used gender clas-
sifier is externally trained on Adience dataset [29)].

Domain A Domain B

2000 m-y, 2000 m-o 2000 f-y, 2000 f-o
1200 afri-y, 1200 afri-o 1200 euro-y, 1200 euro-o
3000 BDD-day, 3000 syn-day 3000 BDD-night, 3000 syn-night
500 flat-red, 500 flat-black 500 txt-red, 500 txt-black
500 flat-red, 500 txt-red 500 flat-black, 500 txt-black

Experiment

MORPH-gender
MORPH-ethnicity
Cityscapes-Synthia
Handbags-MORPHcolor
Handbags-texture

Table 3: Details of datasets used training the classifier to evaluate
quantitatively the results. Abbreviations used: f=female, m=male,
y=young, o=old, afri=african, euro=european, BDD=BDD100K,
syn=synthia, txt=textured. Note the used subsets are disjoint with
the ones used to perform image translation.



6.2. Semantic extractor and Classifier

In this paper, we introduce the semantic extractor and
the classifier. The former prevents changing the unwanted
properties, such as gender when our task is makeup. The
latter is to evaluate the performance of our generated
model to keep the unwanted properties. There are two dif-
ferences between both classifiers. First, the dataset used
to train the model is different. Taking the biased makeup
as an example: the semantic extractor is trained on VGG-
Face [35] (section. 6.4), while the classifier to evaluate our
model is trained on the face dataset which contains two
classes: (1) male (makeup, no makeup) and (b) female
(makeup, no makeup), which guarantees that the trained
classifier is robust to makeup. Second, we leverage differ-
ent architectures. Although both classifiers are based on
VGG backbone, the semantic extractor has an additional
convolutional layer with the purpose of extracting effec-
tively the semantic information. The classifier to evaluate
our model has the same architecture as VGG.

6.3. Baselines and variants

We compare our method with the following approaches:

MUNIT [21] disentangles the latent distribution into
the content space which is shared between two domains,
and the style space which is domain-specific and aligned
with a Gaussian distribution. In order to do so, MUNIT
introduces domain-specific encoders, generators, and dis-
criminators.The encoders output both the content code
and the style code. The content code contains pose infor-
mation, while the style code aims to represent the stylistic
appearance information. The learned content and style are
input into the generator to synthesize the output sample.
At test time, MUNIT takes as an input the source image
and different style codes to achieve diverse outputs.

DRIT [27] similarly explores the distribution of latent
representation. Different from MUNIT by means of adap-
tive instance normalization to control diversity, DRIT di-
rectly insert noise into latent feature to achieve diverse
output.

NICE-GAN [10] investigates sharing weights between
encoder and discriminator for compactness and training
effectiveness. More specifically, their encoder is part of
the discriminator and it is trained as such via a decoupling
mechanism.

U-GAT-IT [25] combines an attention module with a
new learnable normalization function, which enables the
handling of geometric changes.

We compare the previous baselines with different config-
urations of the proposed UNIT approach. In particular we
study variants with and without Pooling Index(PI). The
code is available 3.

Shttps://github.com/yaxingwang/UDIT

Input  Direction MUNIT +PI DRIT UDIT UDIT+PI
M Makeup 0.268 0.267 0.263  0.192 0.151
F Makeup 0.212 0.199 0.193 0.154 0.133
F Demakeup 0.297 0.293 0.253  0.208 0.203

Table 4: LPIPS distance on Biased makeup.

6.4. Robustness to specific biases.

Evaluating the generated images is challenge [4], here
we introduce a new method to measure whether trans-
lating an image across domains with misaligned biases
changes particular properties of the image. For simplicity,
we explain here these evaluation measures for the Biased
makeup dataset (other datasets are similar). In particular,
we want to evaluate whether applying or removing makeup
on subjects changes their perceived gender. In order to do
this, we train a gender classifier f(x) and evaluate the
gender prediction over the translated image, i.e. f (z;-; ).
Since we have the ground-truth label for the original im-
age, we can determine whether gender has been changed
with respect to the original image. We call this measure
misclassification rate. The problem with this measure is
that the classifier might output erroneous estimates in the
first place for some challenging cases. For this reason, we
also compute the drop in confidence of the classifier dur-
ing translation as 0 (z;) = f(x;) — f (z;—;). This score
will indicate the effect of the translation on the classifier
estimation of the correct label, somewhat accounting for
the classifier’s failure cases.

We can use the above measures with general properties
such as gender or race. However, our face experiments
also include a setting in which we want to preserve the
identity of the input. Evaluating changes in identity is
more complex since the set of categories is specific to the
dataset. In this case, we measure the change in identity by
directly computing the distance between identity features
given an off-the-shelf face recognition network [35]. We
call this measure ID distance and only compute it for the
face datasets.

Diversity. Several image translation approaches [57,
21, 27] measure the diversity of the outputs by using the
perceptual similarity metric LPIPS [53], which is based on
differences between deep features We follow the protocol
introduced in [57] and average the LPIPS distance between
19 random pairs of outputs for 100 different input images.

6.5. Biased makeup dataset

Semantic constraint. In this dataset, we focus on
the misalignment between biases at two levels: gender and
identity. Preserving identity is a more restrictive constrain
than preserving gender, and implicitly also preserves it.
For this reason, we use a semantic constraint based on
identity (ID). We consider an off-the shelf network for face
recognition [35] and select its highest level convolutional
features as semantic feature. The model has been trained
with VGG-Face [35], which contains over 2000 different
identities. VGG-Face is based on VGG-Very-Deep-16 ar-
chitecture [42]. In this paper, we employ the convolu-
tional layers of VGG-Face to perform semantic constraint.
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Those convolutional layers contains 5 blocks. The first
block contains two convolutional layers. Each of the re-
mained blocks consists of one max pooling and three con-
volutional layers, except for the second block which employ
one max pooling and two convolutional layers.All convolu-
tional layer has same structure which is composed of 3 x 3
filters with stride 1. Note we use VGG-Face for both biased
makeup and MORPH datasets.

Qualitative evaluation. Fig. 6 compares image transla-
tions obtained with MUNIT [21], MUNIT with pooling in-
dices (PI), DRIT [27], and two variants of our model. The
basic UDIT variant only uses a semantic constraint on ID,
whereas UDIT+PI uses also pooling indices. We can ob-
serve that both MUNIT and DRIT change the gender (i.e.
undesired change) when applying the desired translation
(i.e. adding makeup). This demonstrates the heavy influ-
ence of bias misalignment on DIT methods, which leads
to the inevitable change of unwanted properties. More-
over, the generated images lack realism and quality, re-
sembling cartoonish versions of human faces. Adding PI
to MUNIT does not seem to bring any noticeable bene-
fit. Instead, our UDIT model trained with the ID seman-
tic constraint is very effective to prevent both unwanted
gender and identity changes, as show in the figure. Fur-
thermore, the incorporation of pooling indices results in

No makeup—makeup

I

A b O

e
o 9 = 2 i
= o

ID distance
&

e

No makeup—makeup
input: male

Makeup—no makeup
input: female

Makeup—mno makeup
input: female

(left) misclassification rate, (middle) drop in confidence, (right) ID distance.

D 2 8 16 32 64 128 256
Scenes-daytime 8 87 91 92 92 95 95

Handbags-color  96.3 99.1 99.0 99.3 98.3 98.9 98.4
Handbags-texture 64.2 65.2 66.4 87.0 91.3 92.8 95.4

Table 5: Classifier accuracy for different D values. Boldface
indicates the selected value for the semantic constraint.

an even more successful change on wanted properties (e.g.
adding makeup to males), while generating images of high
quality and realism.

Robustness to unwanted changes. Fig. 5 shows
quantitative results of the three metrics evaluated on the
different methods and both directions. We only evalu-
ate over the gender that is underrepresented in the target
domain. These results confirm the trends observed quali-
tatively in Fig. 6. DIT baselines perform poorly at main-
taining gender and identity, including MUNIT with PI.
Both NICE-GAN and U-GAT-IT fails to obtain diversity
except for generating the target images (e.g., male with-
out makeup). Interestingly, the identity constraint clearly
enhances the preservation of both wanted properties, as
reflected by the substantial drop on all three robustness
measures. Moreover, UDIT+PI further increases robust-
ness to bias. This could be due to the improved quality of
the output images with respect to the input, which leads
to more reliable classifier predictions and pushes together
the identity features. In the remainder of this paper we
only employ the UDIT+PI variant and refer to it simply
as UDIT, unless stated otherwise.

Diversity.  Table 4 shows the LPIPS distance of the
different evaluated methods. UDIT models seem to be
notably decreasing the LPIPS distance in comparison to
MUNIT and DRIT. This makes sense since the identity
constraint not only prevents unwanted bias, but it also
constrains the diversity in those directions that compro-
mise the preservation of identity. In this case, LPIPS dis-
tance may not be able to capture the more subtle varia-
tions that conform the diversity that should be expected
in that setting. For example, the values for both UDIT
variants are significantly lower than those of MUNIT or
MUNIT+PI, but the examples in Fig. 6 show that it is
able to generate very diverse images, within the narrow
space that allows preserving gender and identity (e.g. lip
color, skin tone and shading, beard thickness).
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6.6. MORPH

Qualitative evaluation. Fig. 7a and b show examples
of young female and old female, respectively, and their
corresponding translations to the other domain (old and
young). As we can observe, the translations are realistic in
general. DRIT tends to output uni-modal samples / gener-
ate only one distribution mode, while the other two meth-
ods also generate rich variations, including skin tones, hair
color, beard /moustache variations, etc. However, MUNIT
tends to generate diversity that includes changes in eth-
nicity and gender. In the case of the young female, gender
is almost always changed due to the extreme bias towards
males. UDIT, on the other hand, preserves the wanted se-
mantic properties and outputs diversity without unwanted
changes.

Robustness to unwanted changes. Here we evaluate
how the identity constraint impacts gender and ethnicity
changes compared to MUNIT and DRIT. Fig. 8 shows the
misclassification rate and drop in confidence of two classi-
fiers, gender and ethnicity, trained on a disjoint subset of
MORPH not used for translation. We restrict our analysis
to African and European, due to the very limited data in
the other two ethnicities. The results show a drop in mis-
classification rate and a lower confidence drop when using
UDIT, which are effective to alleviate gender bias (espe-

cially in females) and ethnicity bias (especially in Euro-
peans). We also show ID distance, which achieves lower
values for UDIT, indicating that identity is also better pre-
served. These results are in line with the observations in
Fig. 7.

6.7. Cityscapes — Synthia-night

Semantic constraint. We train a binary classifier for
daytime classification based on VGG16 [42] using both real
and synthetic images. We use 6000 realistic images from
BDD-100K [49] with a 50/50 daytime distribution. As
synthetic images we use 6000 images from a disjoint sub-
set of Synthia [40], also with a balanced class distribution.
We consider two semantic constraints. The naive vari-
ant employs features of the last convolutional layer, which
have dimension 8 x 8 x 512. Given the high dimensionality
of these semantic features, the undesired information con-
tained in them could potentially limit the model’s trans-
lation ability or the output diversity. For this reason, we
also employ the reduced semantic constraint variant pre-
sented in sec. 5.1, whose channel dimensions are reduced
to D by an additional 1 x 1 x D layer. In order to select
a suitable dimensionality we train several classifiers with
different D values (Table 5). We select D = 16 as it offers
a good trade-off between small size and accuracy.
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Results. Figs. 9 and 10 present qualitative results and
robustness measures respectively. MUNIT translations
mostly depict night scenes, as can be confirmed by the
high misclassification rate and drop in confidence. UDIT
with naive constraint improves on this by preserving in
the translations the input day-time. However, the outputs
have clearly limited diversity and lower quality. UDIT
with the reduced constraint achieves the overall best trans-
lations, both in terms of quality and wanted diversity. This
leads to remarkably low values on both robustness mea-
sures.

6.8. Biased handbags

Semantic constraint. In this section, we still construct
the classifier based on VGG16 [42]. We consider two dif-
ferent semantic constraints depending on the experiment.
For Handbags-texture we train a color classifier selecting
500 images per color from [50]. For Handbags-color, we
gather images from the web searching for e.g. “textured
red handbag” and verifying the downloaded images. We
use 1000 flat and 1000 textured handbags to train the clas-
sifier. We only consider here the reduced variant of the
semantic constraint. Table 5 shows the accuracy results
for the different D values. We select D = 8 for color and
D = 32 for texture. The overall lower accuracy of the tex-
ture classifier indicates that this is indeed a more subtle

attribute, which in turn makes its recognition more chal-
lenging and increases the required dimensionality on the
semantic features.

Results.  Fig. 12 shows example results for these two
experiments, evidencing how MUNIT succumbs to both
types of biases. UDIT, on the other hand, manages to per-
form the desired translation without introducing unwanted
changes. In general, the effects are more obvious for the
color attribute as texture changes are harder to perceive.
We confirm the benefits of UDIT quantitatively in Fig. 11.
MUNIT and DRIT present a notably high misclassification
rate and drop in confidence for both experiments. UDIT,
instead, significantly increases the robustness to biases us-
ing a properly designed semantic constraint.

7. Conclusion

In this paper we tackle the problem of learning image
translation models from biased datasets, which leads to
unwanted changes in the output images. In order to ad-
dress tdirection of MORPH.his problem, we propose the
use of semantic constraints, which can effectively allevi-
ate the effects of biases. A properly designed semantic
constraint allows for wanted diversity in the translations
while preserving the desired semantic properties of the in-
put image. We evaluated the effectiveness of our UDIT
model on faces, objects, and scenes.
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Appendix

Tables 6-10 show the architectures of the content en-
coder, style encoder, image decoder and discriminator used
in the cross-modal experiment. The used abbreviations are
shown in Table 11.

Layer Input —Output Kernel, stride, pad
convl [4,128, 128,3] — (4,128, 128, 64] 77, 1,3
IN1 4,128, 128, 64] — [4,128, 128, 64] -
pooll (max) [4,128, 128, 64] —[4,64, 64, 64]+indices] 2,2],
conv2 [4,64, 64,64] — [4,64, 64,128] 7.7, 1, 3
N2 4,64, 64,128 — [4,64, 64,128] -
pool2 (max) [4,64, 64,128] —[4,32, 32,128 +indices2 [2,2], 2, -
conv3 [4,32, 32,128] — 4,32, 32,250] 77,1,3
IN3 4,32, 32,256] — [4,32, 32,256] -
pool3 (max) [4,32, 32,256] — [4,16, 16,256]+indices3 [2,2), 2, -
RB(IN)4-9 [4,16, 16,256] — [4,16, 16,250] 77,13

Layer

Input —Output

Kernel, stride, pad

RB(AdaIN)1-6

unpooll
convl
IN1

(11,0) 114,16, 16,256] — [4,16, 16,256] 7. 1,3

indices3 + [4,16, 16,256] — [4,32, 32,256] 2, 2

4,32, 32,256] — [4,32, 32,128] 1,
4,32, 32,128] — [4,32, 32,128] -

mpool2
conv2
IN2

unpool3
conv3

ndices2 + 4,32, 32,128] — [4, 64, 64,128] 2.2, 2,
4, 64, 64,128] — [4, 64, 64,64) 7,7, 1,3
4, 64, 64,64]— [4, 64, 64,64] ,
indicesl + [4, 64, 64,64] — [4, 128, 128,64]] (2, 2], 2, -
[4, 128, 128,64] — [4, 128, 128,3] 77,13

Table 9: Decoder (Image generator).
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Table 6: Content encoder.

Table 10:

Layer Input —Output Kernel, stride, pad
convl [4,128, 128,3] — [4,64, 64,64] [44], 2, 1
Irelul [4,64, 64,64] — [4,64, 64,64] -y

conv2 [4,64, 64,64] — [4,32, 32,128] @4, 2,1
Irelu? [4,32, 32,128] — [4,32, 32,128 -

conv3 4,32, 32,128] — [4,16, 16,256] [44],2,1
Irelu3 [4,16, 16,256] — [4,16, 16,256] -y

convd [4,16, 16,256] — [4,8, 8,512] [44], 2, 1
Irelud  [4,8, 8,512] —[4,8, 8,512] -y -

convh 4,8, 8,512] >[4,8, 8,1] 1], 1,0

Architecture for the discrim Loss specificationinator for

Layer Input —Output Kernel, stride, pad
convl [4,128, 128,3] — [4,128, 128, 64] 7,7,1,3
relul [4,128, 128, 64] —[4,64, 64, 64] -y
conv2  [4,64, 64,64] — [4,32, 32,128] 44,2, 1
relu2  [4,32, 32,128] —[4,32, 32,128] - -
conv3 [4,32, 32,128] — [4,16, 16,250] 44], 2,1
relud  [4,16, 16,256] — [4,16, 16,256] - -
GAP  [4,16, 16,256] — [4,1, 1,256] - oy
convd [4,1, 1,256] — [4,1, 1,8] [1,1],1,0
Table 7: Style encoder.
Layer Input —Output Layer Input —Output

128 x 128 input. The discriminators for 64 x 64, and 32 x 32 use the
same convolutional architecture.

Abbreviation

Name

pool

pooling layer

unpool

unpooling layer

Irelu

leaky relu layer

concat

concatenate layer

conv

convolutional layer

linear

fully connection layer

IN

instance normalization layer

GAP

global average pooling layer

RB(IN)

residual block layer using instance normalization

linearl [4, 8] — [4, 256]

linearl [4, 8] — [4, 256]

relul  [4, 256] —[4, 256] relul  [4, 256] —[4, 256]
Tmcar2 [4, 256] — [, 250] Tmear2 [4, 256] — [4, 250]
relu2  [4, 256] —+[4, 256] relu2  [4, 256] —[4, 256]
linear3 [4, 256] — [4, 256] linear3 [4, 256] — [4, 256]
reshape [4, 256] —[4,1,1, 256] reshape [4, 256] —[4,1,1, 256]

(a) affine parameter

(b) affine parameter o

Table 8: Networks for the estimation of the affine parameters that
are used in the AdalN layer. The parameters (a) p and (b) o scale
and shift the normalized content, respectively. Note that (a) and (b)

share the first two layers.

RB(AdalN) residual block layer using adaptive instance normalization

Table 11: Abbreviations used in other tables.



