

中国科学院计算技术研究所

Introduction

We address two **problems**:

- 1. Effectively implement multiscale CNN architectures for scene recognition.
- 2. Effectively combine Places and ImageNet

Motivation

- Scaling (of patches) changes the data distribution.
- This induces a scale-related bias if the CNN model is fixed.
- However, this **bias is ignored** in most works.

- scene-CNNs[1]. Trained on *Only **global** scale(s), object-like scales are ignored.
- *The CNN model is **fixed** black box (scale is ignored).

Scene recognition with CNNs: objects, scales and dataset bias Luis Herranz, Shuqiang Jiang, Xiangyang Li

Institute of Computer Technology, Chinese Academy of Sciences, Beijing, China {luis.herranz,shuqiang.jiang,xiangyang.li}@vipl.ict.ac.cn

Scale-induced bias

The distributions of objects in object datasets and scene datasets are very different

• Scale is one of the main factors

Effects of scaling:

- Changes the distribution of visual features
- Content in patches shifts from scenes to objects

Multi-scale architecture with scale-specific CNNs

How to correct scale-induced bias?

- Scale-specific CNNs (instead of a fixed one) adapted to the patches at each scale. We study two ways:
- Switch Places-CNNs/ImageNet-CNNs, for global/local scales, respectively.

References

- B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, Learning deep features for scene recognition using Places database, In NIPS, 2014.
- Y. Gong, L. Wang, R. Guo, and S. Lazebnik, Multi-scale orderless pooling of deep convolutional activation features, In ECCV, 2014
- M. Dixit, S. Chen, D. Gao, N. Rasiwasia, and N. Vasconcelos. Scene classification with semantic fisher vectors, In CVPR, 2015.
- D. Yoo, S. Park, J.-Y. Lee, and I. So Kweon. Multiscale pyramid pooling for deep convolutional representation, In CVPR Workshops, 2015

	Architecture	Data	MIT Indoor 67 SUN 397		
			Alex	VGG	Alex VGG ³
	Best single	IN	66.64	76.42	52.42 59.71
		PL	72.76	80.90	58.88 66.23
ure)	Dual	IN	71.87	79.04	56.62 61.07
		PL	76.87	83.43	62.60 68.49
, ,	Dual hybrid	IN/PL	78.28	85.59	64.10 69.20
	Three	IN/PL	78.28	86.04	63.03 70.17
♥ □ places-imnet imnet-places	Full (7 scales)	IN	74.33	70.22	58.71 55.18
		PL	78.21	77.81	63.81 58.80
places	Full hybrid (spliced)	IN/PL	80.97	80.22	65.38 63.19
_	Double full hybrid	IN/PL	80.97	80.7	66.26 62.01
* *	Human (good)[4]			-	68.5%
3-1827 same	Human (expert)[4]			-	70.6%

¹ Six scales (1827x1827 was not included).