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How to correct scale-induced bias?
Scale-specific CNNs (instead of a fixed one) adapted to the patches at each scale. We study two ways:
• Switch Places-CNNs/ImageNet-CNNs, for global/local scales, respectively.
• Fine tune with patches extracted at the target scale

Multi-scale architecture with scale-specific CNNs 

We address two problems:
1. Effectively implement multiscale CNN architectures for scene

recognition.
2. Effectively combine Places and ImageNet

Motivation
• Scaling (of patches) changes the data distribution.
• This induces a scale-related bias if the CNN model is fixed.
• However, this bias is ignored in most works.

Contributions
• Study the scale-induced bias
• Multi-scale architecture using scale-specific CNNs.

Previous works
1. Scene recognition:
• Holistic scene-CNNs[1]. Trained on Places-CNN.

*Only global scale(s), object-like scales are ignored.
• Multi-scale local CNN pooling[2,3,4]. ImageNet-CNNs on

multiple scales and aggregated using pooling (e.g. VLAD, FV).
*The CNN model is fixed black box (scale is ignored).

2. Combining object data and scene data in a CNN:
• Hybrid-CNN[1]. Trained with all ImageNet and Places data.

*Object and scene images are rescaled equally (scale is ignored).

Introduction

The distributions of objects in object datasets and
scene datasets are very different
• Scale is one of the main factors
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Effects of scaling:
• Changes the distribution of visual features
• Content in patches shifts from scenes to objects

Scale-induced bias
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Experimental results

MIT Indoor 67
(dual architecture)

(dual architecture, fine tuned)

SUN397 (dual architecture) (spliced architecture)
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