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Neural image/video codecs
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- Coding tools and syntax are parametric and learned
- Encoders/decoders are deep neural networks



Neural image compression
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Optimize a weighted rate-distortion loss
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(𝝀 controls the tradeoff) 

Compressive autoencoder (CAE) [Theis2017, Balle2017]
(autoencoder+quantization+entropy coding)

Practical neural image compression?
- Minimize rate
- Minimize distortion
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- Variable rate
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- Low memory
- Low computation
- Low latency

- Heavy encoders/decoders

- 𝝀 is fixed



Variable rate neural image compression
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Feature modulation [MAE, cAE]
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Objective: one single model for multiple 𝜆
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cAE: conditional autoencoder [Choi2019] 
MAE: modulated autoencoder [Yang2020]



Model capacity and rate-distortion

P
S
N

R
 (
d
B
)

bpp
conv

conv

conv

gdn

gdn

gdn

gdn

gdn

gdn

conv

conv

conv

w=192

w=filters per layer

conv

conv

conv

gdn

gdn

gdn

gdn

gdn

gdn

conv

conv

conv

w=128

conv

conv

conv

gdn

gdn

gdn

gdn

gdn

gdn

conv

conv

conv

w=64
There is a minimal capacity 

for every RD tradeoff

Lower w results in less 
memory and computation!!
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Slimmable compressive autoencoder

✓- Variable rate

- Minimize rate
- Minimize distortion

✓
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Approach: slim the network to the minimal capacity for a given 𝜆

Slimming [SlimCAE]

- Lower memory
- Lower computation
- Lower latency ✓

✓
✓

(for low-mid rates)
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Slimmable layers in SlimCAE
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Slimmable convolution [Yu2019]
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Slimmable layers in SlimCAE
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Training SlimCAE
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Problem: we need the optimal 𝜆s to train the SlimCAE

P
S
N

R
 (
d
B
)

bpp

w=128

w=192

w=64

Estimate from RD curves 
of independent models
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1. Train several independent models 
for different w

2. Plot RD curves and find critical 
points

3. Estimate optimal 𝜆s from trained 
models

Problem: extremely expensive!

Automatically estimate during 
training via 𝜆-scheduling

1. Train a SlimCAE with 𝜆1 = 𝜆2 = 𝜆3
2. While not converged do

• Update 𝜆 s according to schedule
• Optimize CAE



Training SlimCAE
P
S
N

R
 (
d
B
)

bpp

Problem: we need the optimal 𝜆s to train the SlimCAE

P
S
N

R
 (
d
B
)

bpp

w=128

w=192

w=64

Estimate from RD curves 
of independent models

w=192

w=128

w=64

1. Train several independent models 
for different w

2. Plot RD curves and find critical 
points

3. Estimate optimal 𝜆s from trained 
models

Problem: extremely expensive!

Automatically estimate during 
training via 𝜆-scheduling

1. Train a SlimCAE with 𝜆1 = 𝜆2 = 𝜆3
2. While not converged do

• Update 𝜆 s according to schedule
• Optimize CAE



Training SlimCAE
P
S
N

R
 (
d
B
)

bpp

Problem: we need the optimal 𝜆s to train the SlimCAE

P
S
N

R
 (
d
B
)

bpp

w=128

w=192

w=64

Estimate from RD curves 
of independent models

w=192

w=128

w=64

1. Train several independent models 
for different w

2. Plot RD curves and find critical 
points

3. Estimate optimal 𝜆s from trained 
models

Problem: extremely expensive!

Automatically estimate during 
training via 𝜆-scheduling

1. Train a SlimCAE with 𝜆1 = 𝜆2 = 𝜆3
2. While not converged do

• Update 𝜆 s according to schedule
• Optimize CAE

Directly train one model!



Performance comparison
Independent CAEs Scaling [Theis2017] MAE [Yang2020] cAE [Choi2019] SlimCAE (ours)
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Thanks!

https://arxiv.org/abs/2103.15726

https://github.com/FireFYF/SlimCAE

Fei Yang Luis Herranz Mikhail MozerovYongmei Cheng

https://arxiv.org/abs/2103.15726
https://github.com/FireFYF/SlimCAE

