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Abstract. Transferring knowledge of pre-trained networks to new do-
mains by means of fine-tuning is a widely used practice for applications
based on discriminative models. To the best of our knowledge this prac-
tice has not been studied within the context of generative deep networks.
Therefore, we study domain adaptation applied to image generation with
generative adversarial networks. We evaluate several aspects of domain
adaptation, including the impact of target domain size, the relative dis-
tance between source and target domain, and the initialization of con-
ditional GANs. Our results show that using knowledge from pre-trained
networks can shorten the convergence time and can significantly improve
the quality of the generated images, especially when target data is lim-
ited. We show that these conclusions can also be drawn for conditional
GANs even when the pre-trained model was trained without condition-
ing. Our results also suggest that density is more important than diver-
sity and a dataset with one or few densely sampled classes is a better
source model than more diverse datasets such as ImageNet or Places.

Keywords: Generative adversarial networks, transfer learning, domain
adaptation, image generation

1 Introduction

Generative Adversarial Networks (GANs) can generate samples from complex
image distributions [1]. They consist of two networks: a discriminator which
aims to separate real images from fake (or generated) images, and a generator
which is simultaneously optimized to generate images which are classified as real
by the discriminator. The theory was later extended to the case of conditional
GANs where the generative process is constrained using a conditioning prior [2]
which is provided as an additional input. GANs have further been widely ap-
plied in applications, including super-resolution [3], 3D object generation and
reconstruction [4], human pose estimation [5], and age estimation [6].

Deep neural networks have obtained excellent results for discriminative clas-
sification problems for which large datasets exist; for example on the ImageNet
dataset which consists of over 1M images [7]. However, for many problems the
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amount of labeled data is not sufficient to train the millions of parameters typ-
ically present in these networks. Fortunately, it was found that the knowledge
contained in a network trained on a large dataset (such as ImageNet) can easily
be transferred to other computer vision tasks. Either by using these networks as
off-the-shelf feature extractors [8], or by adapting them to a new domain by a
process called fine tuning [9]. In the latter case, the pre-trained network is used
to initialize the weights for a new task (effectively transferring the knowledge
learned from the source domain), which are then fine tuned with the training
images from the new domain. It has been shown that much fewer images were
required to train networks which were initialized with a pre-trained network.

GANs are in general trained from scratch. The procedure of using a pre-
trained network for initialization – which is very popular for discriminative net-
works – is to the best of our knowledge not used for GANs. However, like in
the case of discriminative networks, the number of parameters in a GAN is vast;
for example the popular DC-GAN architecture [10] requires 36M parameters to
generate an image of 64x64. Especially in the case of domains which lack many
training images, the usage of pre-trained GANs could significantly improve the
quality of the generated images.

Therefore, in this paper, we set out to evaluate the usage of pre-trained
networks for GANs. The paper has the following contributions:

1. We evaluate several transfer configurations, and show that pre-trained net-
works can effectively accelerate the learning process and provide useful prior
knowledge when data is limited.

2. We study how the relation between source and target domains impacts the
results, and discuss the problem of choosing a suitable pre-trained model,
which seems more difficult than in the case of discriminative tasks.

3. We evaluate the transfer from unconditional GANs to conditional GANs for
two commonly used methods to condition GANs.

2 Related Work

Transfer learning/domain transfer: Learning how to transfer knowledge
from a source domain to target domain is a well studied problem in computer
vision [11]. In the deep learning era, complex knowledge is extracted during
the training stage on large datasets [12, 13]. Domain adaptation by means of
fine tuning a pre-trained network has become the default approach for many
applications with limited training data or slow convergence [14, 9].

Several works have investigated transferring knowledge to unsupervised or
sparsely labeled domains. Tzeng et al. [15] optimized for domain invariance,
while transferring task information that is present in the correlation between
the classes of the source domain. Ganin et al. [16] proposed to learn domain in-
variant features by means of a gradient reversal layer. A network simultaneously
trained on these invariant features can be transfered to the target domain. Fi-
nally, domain transfer has also been studied for networks that learn metrics [17].
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In contrast to these methods, we do not focus on transferring discriminative
features, but transferring knowledge for image generation.

GAN: Goodfellow et al. [1] introduced the first GAN model for image genera-
tion. Their architecture uses a series of fully connected layers and thus is limited
to simple datasets. When approaching the generation of real images of higher
complexity, convolutional architectures have shown to be a more suitable option.
Shortly afterwards, Deep Convolutional GANs (DC-GAN) quickly became the
standard GAN architecture for image generation problems [10]. In DC-GAN, the
generator sequentially up-samples the input features by using fractionally-strided
convolutions, whereas the discriminator uses normal convolutions to classify the
input images. Recent multi-scale architectures [18–20] can effectively generate
high resolution images. It was also found that ensembles can be used to improve
the quality of the generated distribution [21].

Independently of the type of architecture used, GANs present multiple chal-
lenges regarding their training, such as convergence properties, stability issues,
or mode collapse. Arjovksy et al. [22] showed that the original GAN loss [1]
are unable to properly deal with ill-suited distributions such as those with dis-
joint supports, often found during GAN training. Addressing these limitations
the Wassertein GAN [23] uses the Wasserstein distance as a robust loss, yet
requiring the generator to be 1-Lipschitz. This constrain is originally enforced
by clipping the weights. Alternatively, an even more stable solution is adding a
gradient penalty term to the loss (known as WGAN-GP) [24].

cGAN: Conditional GANs (cGANs) [2] are a class of GANs that use a par-
ticular attribute as a prior to build conditional generative models. Examples of
conditions are class labels [25–27], text [28, 29], another image (image transla-
tion [30, 31] and style transfer [32]).

Most cGAN models [2, 29, 33, 34] apply their condition in both generator
and discriminator by concatenating it to the input of the layers, i.e. the noise
vector for the first layer or the learned features for the internal layers. Instead,
in [32], they include the conditioning in the batch normalization layer. The AC-
GAN framework [25] extends the discriminator with an auxiliary decoder to
reconstruct class-conditional information. Similarly, InfoGAN [35] reconstructs
a subset of the latent variables from which the samples were generated. Miyato et
al. [36] propose another modification of the discriminator based on a projection
layer that uses the inner product between the conditional information and the
intermediate output to compute its loss.

3 Generative Adversarial Networks

3.1 Loss functions

A GAN consists of a generator G and a discriminator D [1]. The aim is to train
a generator G which generates samples that are indistinguishable from the real
data distribution. The discriminator is optimized to distinguish samples from the
real data distribution pdata from those of the fake (generated) data distribution
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pg. The generator takes noise z ∼ pz as input, and generates samples G (z)
with a distribution pg. The networks are trained with an adversarial objective.
The generator is optimized to generate samples which would be classified by
the discriminator as belonging to the real data distribution. The minimax game
objective is given by:

G∗ = argmin
G

max
D
LGAN (G,D) (1)

LGAN (G,D) = Ex∼pdata
[logD(x)] + Ez∼pz [log(1−D(G(z)))] (2)

In the case of WGAN-GP [24] the two loss functions are:

LWGAN−GP (D) = −Ex∼pdata
[D(x)] + Ez∼pz [D(G(z))]

+ λEx∼pdata,z∼pz,α∼(0,1)

[
(‖∇D (αx+ (1− α)G(z)) ‖2 − 1)

2
] (3)

LWGAN−GP (G) = −Ez∼pz [D(G(z))] (4)

3.2 Evaluation Metrics

Evaluating GANs is notoriously difficult [37] and there is no clear agreed refer-
ence metric yet. In general, a good metric should measure the quality and the
diversity in the generated data. Likelihood has been shown to not correlate well
with these requirements [37]. Better correlation with human perception has been
found in the widely used Inception Score [38], but recent works have also shown
its limitations [39]. In our experiments we use two recent metrics that show bet-
ter correlation in recent studies [40, 41]. While not perfect, we believe they are
satisfactory enough to help us to compare the models in our experiments.

Fréchet Inception Distance [42] The similarity between two sets is measured
as their Fréchet distance (also known as Wasserstein-2 distance) in an embed-
ded space. The embedding is computed using a fixed convolutional network (an
Inception model) up to a specific layer. The embedded data is assumed to follow
a multivariate normal distribution, which is estimated by computing their mean
and covariance. In particular, the FID is computed as

FID (X1,X2) = ‖µ1 − µ2‖22 + Tr
(
Σ1 +Σ2 − 2 (Σ1Σ2)

1
2

)
(5)

Typically, X1 is the full dataset with real images, while X2 is a set of generated
samples. We use FID as our primary metric, since it is efficient to compute and
correlates well with human perception [42].

Independent Wasserstein (IW) critic [43] This metric uses an indepen-
dent critic D̂ only for evaluation. This independent critic will approximate the
Wasserstein distance [22] between two datasets X1 and X2 as

IW (X1,X2) = Ex∼X1

(
D̂ (x)

)
− Ex∼X2

(
D̂ (x)

)
(6)
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Table 1: FID/IW (the lower the better / the higher the better) for different trans-
fer configurations. ImageNet was used as source dataset and LSUN Bedrooms
as target (100K images).

Generator Scratch Pre-trained
Discriminator Scratch Pre-trained Scratch Pre-trained

FID
(
X tgt

data,X
tgt
gen

)
32.87 30.57 56.16 24.35

IW
(
X tgt

val ,X
tgt
gen

)
-4.27 -4.02 -6.35 -3.88

In this case, X1 is typically a validation set, used to train the independent critic.
We report IW only in some experiments, due to the larger computational cost
that requires training a network for each measurement.

4 Transferring GAN representations

4.1 GAN adaptation

To study the effect of domain transfer for GANs we will use the WGAN-GP [24]
architecture which uses ResNet in both generator and discriminator. This archi-
tecture has been experimentally demonstrated to be stable and robust against
mode collapse [24]. The generator consists of one fully connected layer, four
Residual Blocks and one convolution layer, and the Discriminator has same set-
ting. The same architecture is used for conditional GAN.

Implementation details We generate images of 64×64 pixels, using standard
values for hyperparameters. The source models1 are trained with a batch of 128
images during 50K iterations (except 10K iterations for CelebA) using Adam
[44] and a learning rate of 1e-4. For fine tuning we use a batch size of 64 and a
learning rate of 1e-4 (except 1e-5 for 1K target samples). Batch normalization
and layer normalization are used in the generator and discriminator respectively.

4.2 Generator/discriminator transfer configuration

The two networks of the GAN (generator and discriminator) can be initialized
with either random or pre-trained weights (from the source networks). In a first
experiment we consider the four possible combinations using a GAN pre-trained
with ImageNet and 100K samples of LSUN bedrooms as target dataset. The
source GAN was trained for 50K iterations. The target GAN was trained for
(additional) 40K iterations.

Table 1 shows the results. Interestingly, we found that transferring the dis-
criminator is more critical than transferring the generator. The former helps to

1 The pretrained models are available at https://github.com/yaxingwang/Transferring-
GANs.
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Fig. 1: Evolution of evaluation metrics when trained from scratch or using a
pre-trained model for unconditional GAN measured with (a) FID and (b) IW
(source: ImageNet, target: LSUN Bedrooms, metrics: FID and IW). The curves
are smoothed for easier visualization by averaging in a window of a few iterations.

improve the results in both FID and IW metrics, while the latter only helps if
the discriminator was already transferred, otherwise harming the performance.
Transferring both obtains the best result. We also found that training is more
stable in this setting. Therefore, in the rest of the experiments we evaluated ei-
ther training both networks from scratch or pre-training both (henceforth simply
referred to as pre-trained).

Figure 1 shows the evolution of FID and IW during the training process with
and without transfer. Networks adapted from a pre-trained model can generate
images of given scores in significantly fewer iterations. Training from scratch for
a long time manages to reduce this gap significantly, but pre-trained GANs can
generate images with good quality already with much fewer iterations. Figures 2
and 4 show specific examples illustrating visually these conclusions.

4.3 Size of the target dataset

The number of training images is critical to obtain realistic images, in particular
as the resolution increases. Our experimental settings involve generating images
of 64×64 pixels, where GANs typically require hundreds of thousands of training
images to obtain convincing results. We evaluate our approach in a challenging
setting where we use as few as 1000 images from the LSUN Bedrooms dataset,
and using ImageNet as source dataset. Note that, in general, GANs evaluated
on LSUN Bedrooms use the full set of 3M million images.

Table 2 shows FID and IW measured for different amounts of training samples
of the target domain. As the training data becomes scarce, the training set
implicitly becomes less representative of the full dataset (i.e. less diverse). In
this experiment, a GAN adapted from the pre-trained model requires roughly
between two and five times fewer images to obtain a similar score than a GAN
trained from scratch. FID and IW are sensitive to this factor, so in order to
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Table 2: FID/IW for different sizes of the target set (LSUN Bedrooms) using
ImageNet as source dataset.

Target samples 1K 5K 10K 50K 100K 500K 1M

From scratch 256.1/-33.3 86.0/-18.5 73.7/-15.3 45.5/-7.4 32.9/-4.3 24.9/-3.6 21.0/-2.9
Pre-trained 93.4/-22.5 74.3/-16.3 47.0/-7.0 29.6/-4.56 24.4/-4.0 21.6/-3.2 18.5/-2.8

1
M

1
0
0
K

1
0
K

1
K

From scratch Pre-trained (ImageNet)

Fig. 2: Images generated at different iterations (from 0 and 10000, step 2000) for
LSUN bedrooms training from scratch and from a pre-trained network. Better
viewed in electronic version.

have a lower bound we also measured the FID between the specific subset used
as training data and the full dataset. With 1K images this value is even higher
than the value for generated samples after training with 100K and 1M images.

Intializing with the pre-trained GAN helps to improve the results in all cases,
being more significant as the target data is more limited. The difference with the
lower bound is still large, which suggests that there is still field for improvement
in settings with limited data.

Figure 2 shows images generated at different iterations. As in the previous
case, pre-trained networks can generate high quality images already in earlier
iterations, in particular with sharper and more defined shapes and more realistic
fine details. Visually, the difference is also more evident with limited data, where
learning to generate fine details is difficult, so adapting pre-trained networks can
transfer relevant prior information.
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Table 3: Datasets used in the experiments.

Source datasets ImageNet [12] Places [13] Bedrooms [45] CelebA [46]

Number of images 1M 2.4M 3M 200K
Number of classes 1000 205 1 1

Target datasets Flower [47] Kitchens [45] LFW [48] Cityscapes [49]
Number of images 8K 50K 13K 3.5K
Number of classes 102 1 1 1

Table 4: Distance between target real data and target generated data
FID/IW

(
X tgtdata,X tgtgen

)
.

Source →
Target ↓ Scratch ImageNet Places Bedrooms CelebA

Flowers 71.98/-13.62 54.04/-3.09 66.25/-5.97 56.12/-5.90 67.96/-12.64
Kitchens 42.43/-7.79 34.35/-4.45 34.59/-2.92 28.54/-3.06 38.41/-4.98

LFW 19.36/-8.62 9.65/-5.17 15.02/-6.61 7.45/-3.61 7.16/-3.45
Cityscapes 155.68/-9.32 122.46/-9.00 151.34/-8.94 123.21/-8.44 130.64/-6.40

4.4 Source and target domains

The domain of the source model and its relation with the target domain are also
a critical factor. We evaluate different combinations of source domains and target
domains (see Table 3 for details). As source datasets we used ImageNet, Places,
LSUN Bedrooms and CelebA. Note that both ImageNet and Places cover wide
domains, with great diversity in objects and scenes, respectively, while LSUN
Bedrooms and CelebA cover more densely a narrow domain. As target we used
smaller datasets, including Oxford Flowers, LSUN Kitchens (a subset of 50K out
of 2M images), Label Faces in the Wild (LFW) and CityScapes.

We pre-trained GANs for the four source datasets and then trained five GANs
for each of the four target datasets (from scratch and initialized with each of
the source GANs). The FID and IW after fine tuning are shown in Table 4. Pre-
trained GANs achieve significantly better results. Both metrics generally agree
but there are some interesting exceptions. The best source model for Flowers as
target is ImageNet, which is not surprising since it contains also flowers, plants
and objects in general. It is more surprising that Bedrooms is also competitive
according to FID (but not so much according to IW). The most interesting
case is perhaps Kitchens, since Places has several thousands of kitchens in the
dataset, yet also many more classes that are less related. In contrast, bedrooms
and kitchens are not the same class yet still very related visually and structurally,
so the much larger set of related images in Bedrooms may be a better choice.
Here FID and IW do not agree, with FID clearly favoring Bedrooms, and even
the less related ImageNet, over Places, while IW preferring Places by a small
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Fig. 3: Transferring GANs: training source GANs, estimation of the most suit-
able pre-trained model and adaptation to the target domain.

Table 5: Distance between source generated data X srcgen and target real data X tgtdata,
and distance between source real X srcdata and generated data X srcgen.

Source →
Target ↓ ImageNet Places Bedrooms CelebA

FID
(
X src

gen,X tgt
data

) Flowers 237.04 251.93 278.80 284.74
Kitchens 183.27 180.63 70.06 254.12

LFW 333.54 333.38 329.92 151.46
Cityscapes 233.45 181.72 227.53 292.66

FID
(
X src

gen,X src
data

)
Source 63.46 55.66 17.30 75.84

margin. As expected, CelebA is the best source for LFW, since both contain
faces (with different scales though), but Bedroom is surprisingly very close to
the performance in both metrics. For Cityscapes all methods have similar results
(within a similar range), with both high FID and IW, perhaps due to the large
distance to all source domains.

4.5 Selecting the pre-trained model

Selecting a pre-trained model for a discriminative task (e.g. classification) is re-
duced to simply selecting either ImageNet, for object-centric domains, or Places,
for scene-centric ones. The target classifier or fine tuning will simply learn to ig-
nore non-related features and filters of the source network.

However, this simple rule of thumb does not seem to apply so clearly in
our GAN transfer setting due to generation being a much more complex task
than discrimination. Results in Table 4 show that sometimes unrelated datasets
may perform better than other apparently more related. The large number of
unrelated classes may be an important factor, since narrow yet dense domains
also seem to perform better even when they are not so related (e.g. Bedrooms).
There are also non-trivial biases in the datasets that may explain this behavior.
Therefore, a way to estimate the most suitable model for a given target dataset
is desirable, given a collection of pre-trained GANs.

Perhaps the most simple way is to measure the distance between the source
and target domains. We evaluated the FID between the (real) images in the
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target and the source datasets (results included in the supplementary material).
While showing some correlation with the FID of the target generated data, it has
the limitation of not considering whether the actual pre-trained model is able
or not to accurately sample from the real distribution. A more helpful metric
is the distance between the target data and the generated samples by the pre-
trained model. In this way, the quality of the model is taken into account. We
estimate this distance also using FID. In general, there seem to roughly correlate
with the final FID results with target generated data (compare Tables 4 and 5).
Nevertheless, it is surprising that Places is estimated as a good source dataset
but does not live up to the expectation. The opposite occurs for Bedrooms, which
seems to deliver better results than expected. This may suggest that density is
more important than diversity for a good transferable model, even for apparently
unrelated target domains.

In our opinion, the FID between source generated and target real data is a
rough indicator of suitability rather than accurate metric. It should taken into
account jointly with others factors (e.g. quality of the source model) to decide
which model is best for a given target dataset.

4.6 Visualizing the adaptation process

One advantage of the image generation setting is that the process of shifting from
the source domain towards the target domain can be visualized by sampling
images at different iterations, in particular during the initial ones. Figure 4
shows some examples of the target domain Kitchens and different source domains
(iterations are sampled in a logarithmic scale).

Trained from scratch, the generated images simply start with noisy patterns
that evolve slowly, and after 4000 iterations the model manages to reproduce the
global layout and color, but still fails to generate convincing details. Both the
GANs pre-trained with Places and ImageNet fail to generate realistic enough
source images and often sample from unrelated source classes (see iteration 0).
During the initial adaptation steps, the GAN tries to generate kitchen-like pat-
terns by matching and slightly modifying the source pattern, therefore preserv-
ing global features such as colors and global layout, at least during a significant
number of iterations, then slowly changing them to more realistic ones. Never-
theless, the textures and edges are sharper and more realistic than from scratch.
The GAN pre-trained with Bedrooms can already generate very convincing bed-
rooms, which share a lot of features with kitchens. The larger number of training
images in Bedrooms helps to learn transferable fine grained details that other
datasets cannot. The adaptation mostly preserves the layout, colors and per-
spective of the source generated bedroom, and slowly transforms it into kitchens
by changing fine grained details, resulting in more convincing images than with
the other source datasets. Despite being a completely unrelated domain, CelebA
also manages to help in speeding up the learning process by providing useful
priors. Different parts such as face, hair and eyes are transformed into different
parts of the kitchen. Rather than the face itself, the most predominant feature
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remaining from the source generated image is the background color and shape,
that influences in the layout and colors that the generated kitchens will have.

5 Transferring to conditional GANs

Here we study the transferring the representation learned by a pre-trained uncon-
ditional GAN to a cGAN [2]. cGANs allow us to condition the generative model
on particular information such as classes, attributes, or even other images. Let y
be a conditioning variable. The discriminator D(x, y) aims to distinguish pairs
of real data x and y sampled from the joint distribution pdata (x, y) from pairs of
generated outputs G(z, y′) conditioned on samples y′ from y’s marginal pdata(y).

5.1 Conditional GAN adaptation

For the current study, we adopt the Auxiliary Classifier GAN (AC-GAN) frame-
work of [25]. In this formulation, the discriminator has an ‘auxiliary classifier’
that outputs a probability distribution over classes P (C = y|x) conditioned on
the input x. The objective function is then composed of the conditional version
of the GAN loss LGAN (eq. (2)) and the log-likelihood of the correct class. The
final loss functions for generator and discriminator are:

LAC−GAN (G) = LGAN (G)− αGE [log (P (C = y′|G(z, y′)))] , (7)

LAC−GAN (D) = LGAN (D)− αDE [log (P (C = y|x))] , (8)

respectively. The parameters αG and αD weight the contribution of the auxiliary
classifier loss with respect to the GAN loss for the generator and discriminator. In
our implementation, we use Resnet-18 [50] for bothG andD, and the WGAN-GP
loss from the equations (3) and (4) as the GAN loss. Overall, the implementation
details (batch size, learning rate) are the same as introduced in section 4.1.

In AC-GAN, the conditioning is performed only on the generator by append-
ing the class label to the input noise vector. We call this variant ‘Cond Concat’.
We randomly initialize the weights which are connected to the conditioning prior.
We also used another variant following [32], in which the conditioning prior is
embedded in the batch normalization layers of the generator (referred to as
‘Cond BNorm’). In this case, there are different batch normalization parameters
for each class. We initialize these parameters by copying the values from the
unconditional GAN to all classes.

5.2 Results

We use Places [13] as the source domain and consider all the ten classes of the
LSUN dataset [45] as target domain. We train the AC-GAN with 10K images
per class for 25K iterations. The weights of the conditional GAN can be trans-
ferred from the pre-trained unconditional GAN (see section 3.1) or initialized
at random. The performance is assessed in terms of the FID score between tar-
get domain and generated images. The FID is computed class-wise, averaging
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Table 6: Per-class and overall FID for AC-GAN. Source: Places, target: LSUN
Init Iter Bedr Bridge Church Classr Confer Dining Kitchen Living Rest Tower Avg. All

Scratch
250 298.4 310.3 314.4 376.6 339.1 294.9 314.2 316.5 324.4 301.0 319.0 352.4
2500 195.9 135.0 133.0 218.6 185.3 173.9 167.9 189.3 159.5 125.6 168.4 137.3
25000 72.9 78.0 52.4 106.7 76.9 40.1 53.9 56.1 74.7 59.8 67.2 49.6

Pre-trained
250 168.3 122.1 148.1 145.0 151.6 144.2 156.9 150.1 113.3 129.7 142.9 107.2
2500 140.8 96.8 77.4 136.0 136.8 84.6 85.5 94.9 77.0 69.4 99.9 74.8
25000 59.9 68.6 48.2 79.0 68.7 35.2 48.2 47.9 44.4 49.9 55.0 42.7

over all classes and also considering the dataset as a whole (class-agnostic case).
The classes in the target domain have been generated uniformly. The results are
presented in table 6, where we show the performance of the AC-GAN whose
weights have been transferred from pre-trained network vs. an AC-GAN initial-
ized randomly. We computed the FID for 250, 2500 and 25000 iterations. At
the beginning of the learning process, there is a significant difference between
the two cases. The gap is reduced towards the end of the learning process but
a significant performance gain still remains for pre-trained networks. We also
consider the case with fewer images per class. The results after 25000 iterations
for 100 and 1K images per class are provided in the last column of table 7. We
can observe how the difference between networks trained from scratch or from
pre-trained weights is more significant for smaller sample sizes. This confirms the
trend observed in section 4.3: transferring the pre-trained weights is especially
advantageous when only limited data is available.

The same behavior can be observed in figure 5 (left) where we compare the
performance of the AC-GAN with two unconditional GANs, one pre-trained on
the source domain and one trained from scratch, as in section 4.2. The curves
correspond to the class-agnostic case (column ‘All’ in the table 6). From this
plot, we can observe three aspects: (i) the two variants of AC-GAN perform
similarly (for this reason, for the remaining of the experiments we consider only
‘Cond BNorm’); (ii) the network initialized with pre-trained weights converges
faster than the network trained from scratch, and the overall performance is
better; and (iii) AC-GAN performs slightly better than the unconditional GAN.

Next, we evaluate the AC-GAN performance on a classification experiment.
We train a reference classifier on the 10 classes of LSUN (10K real images per
class). Then, we evaluate the quality of each model trained for 25K iterations
by generating 10K images per class and measuring the accuracy of the reference
classifier for 100, 1K and 10K images per class. The results show an improve-
ment when using pre-trained models, with higher accuracy and lower FID in
all settings, suggesting that it captures better the real data distribution of the
dataset compared to training from scratch.

Finally, we perform a psychophysical experiment with generated images by
AC-GAN with LSUN as target. Human subjects are presented with two images:
pre-trained vs. from scratch (generated from the same condition <class>), and
asked ‘Which of these two images of <class> is more realistic?’ Subjects were
also given the option to skip a particular pair should they find very hard to decide
for one of them. We require each subject to provide 100 valid assessments. We
use 10 human subjects which evaluate image pairs for different settings (100, 1K,
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Table 7: Accuracy of AC-GAN for the classification task and overall FID for
different sizes of the target set (LSUN).

#images Method
Accuracy (%)

FID
Bedr Bridge Church Classr Confer Dining Kitchen Living Rest Tower Avg.

100/class
scratch 23.0 88.2 55.1 29.2 3.6 24.9 20.8 8.4 89.3 61.6 40.4 162.9

pre-trained 35.7 72.7 45.7 59.4 7.9 38.2 36.3 20.1 81.0 56.6 45.4 119.1

1K/class
scratch 49.9 78.1 75.1 51.8 14.6 51.2 31.2 23.2 90.7 61.5 52.7 117.3

pre-trained 76.4 82.5 69.1 80.6 34.2 52.6 62.4 52.9 80.5 67.5 65.9 77.5

10K/class
scratch 94.9 94.3 89.6 85.0 82.4 91.2 88.0 86.9 91.3 83.5 88.7 49.6

pre-trained 87.1 95.7 90.8 95.1 86.8 90.2 88.9 90.1 93.0 88.9 90.8 42.7

10K images per class). The results (Fig. 5 right) clearly show that the images
based on pre-trained GANs are considered to be more realistic in the case of 100
and 1K images per class (e.g. pre-trained is preferred in 67% of cases with 1K
images). As expected the difference is smaller for the 10K case.

6 Conclusions

We show how the principles of transfer learning can be applied to generative
features for image generation with GANs. GANs, and conditional GANs, bene-
fit from transferring pre-trained models, resulting in lower FID scores and more
recognizable images with less training data. Somewhat contrary to intuition, our
experiments show that transferring the discriminator is much more critical than
the generator (yet transferring both networks is best). However, there are also
other important differences with the discriminative scenario. Notably, it seems
that a much higher density (images per class) is required to learn good transfer-
able features for image generation, than for image discrimination (where diversity
seems more critical). As a consequence, ImageNet and Places, while producing
excellent transferable features for discrimination, seem not dense enough for gen-
eration, and LSUN data seems to be a better choice despite its limited diversity.
Nevertheless, poor transferability may be also related to the limitations of cur-
rent GAN techniques, and better ones could also lead to better transferability.

Our experiments evaluate GANs in settings rarely explored in previous works
and show that there are many open problems. These settings include GANs
and evaluation metrics in the very limited data regime, better mechanisms to
estimate the most suitable pre-trained model for a given target dataset, and the
design of better pre-trained GAN models.
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Fig. 4: Evolution of generated images (in logarithmic scale) for LSUN kitchens
with different source datasets (from top to bottom: from scratch, ImageNet,
Places, LSUN bedrooms, CelebA). Better viewed in electronic version.
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Fig. 5: (Left) FID score for Conditional and Unconditional GAN (source: Places,
target: LSUN 10 classes). (Right) Human evaluation of image quality.
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Supplementary Material

A Distances between source and target data

Table A1 shows the FID between the real images in the source and target
datasets, which could be used as an estimation of which pre-trained GAN (on a
source dataset) may be a good choice to adapt to a particular target dataset. In
most of the cases, the lowest value in Table A1 also corresponds to the lowest
value in Table 1.

Table A1: Distance between source real data and target real data.

Distance
Source →
Target ↓ ImageNet Places Bedrooms CelebA

FID
(
X src

data,X tgt
data

) Flowers 187.52 292.36 270.09 317.21
Kitchens 139.81 99.88 66.54 311.06

LFW 266.50 326.76 318.98 44.12
Cityscapes 205.04 143.55 221.65 349.28

B Model capacity

In order to check how important the capacity of the network is for transferring
GAN features, we performed an additional experiment where we reduced the
capacity of the network to half. We trained a source GAN with ImageNet, but
in this case we reduced the number of filters in each layer to half its original
value (with respect to the architecture used throughout our paper, from WGAN-
GP [25]). The model is then fine tuned with 10K images from LSUN Bedrooms.
The results shown in Fig. 6 suggest that also a lower capacity GAN adapting
pre-trained features obtains significantly better results.
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C Images sampled from the models

We also show examples of images sampled from each of the source models after
fine tuning 5K iterations with Flowers (Fig. 7), Kitchens (Fig. 8), LFW (Fig. 9),
and cityscapes (Fig. 10).
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Fig. 6: Model capacity.
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Fig. 7: Images sampled from each of the source models (left) and after fine tuning
5K iterations with Flowers (right). From top to bottom: from scratch, ImageNet,
Places, LSUN bedrooms, CelebA.
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Fig. 8: Images sampled from each of the source models (left) and after fine tun-
ing 5K iterations with Kitchens (right). From top to bottom: from scratch, Im-
ageNet, Places, LSUN bedrooms, CelebA.
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Fig. 9: Images sampled from each of the source models (left) and after fine tuning
5K iterations with LFW (right). From top to bottom: from scratch, ImageNet,
Places, LSUN bedrooms, CelebA.
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Fig. 10: Images sampled from each of the source models (left) and after fine
tuning 5K iterations with Cityscapes (right). From top to bottom: from scratch,
ImageNet, Places, LSUN bedrooms, CelebA.


