
NamedCurves: Learned Image Enhancement via

Color Naming

David Serrano-Lozano1,2, Luis Herranz3, Michael S. Brown4, and
Javier Vazquez-Corral1,2

1 Computer Vision Center, Barcelona, Spain
2 Universitat Autònoma de Barcelona, Barcelona, Spain

3 Universidad Autónoma de Madrid, Madrid, Spain
4 York University, Toronto, Canada

{dserrano,jvazquez}@cvc.uab.cat, luis.herranz@uam.es, mbrown@eecs.yorku.ca
namedcurves.github.io

ΔE = 3.82

ΔE = 6.68ΔE = 15.60

DeepLPF

Ours

Orange-Brown-Yellow Achromatic

Pink-Purple Red

Green Blue

Input

Ground truth

Fig. 1: Column 1 displays an input image corrected by a photo-editing expert (denoted
as ground truth). Our proposed method decomposes the image based on color naming
and learns a tone-curve correction to mimic the expert's style (shown in columns 2-3).
Results comparing the input, our results, and the approach by [21] are reported in
terms of the color distance metric ∆E00.

Abstract. A popular method for enhancing images involves learning
the style of a professional photo editor using pairs of training images
comprised of the original input with the editor-enhanced version. When
manipulating images, many editing tools o�er a feature that allows the
user to manipulate a limited selection of familiar colors. Editing by color
name allows easy adjustment of elements like the "blue" of the sky or
the "green" of trees. Inspired by this approach to color manipulation, we
propose NamedCurves, a learning-based image enhancement technique
that separates the image into a small set of named colors. Our method
learns to globally adjust the image for each speci�c named color via tone
curves and then combines the images using an attention-based fusion
mechanism to mimic spatial editing. We demonstrate the e�ectiveness of
our method against several competing methods on the well-known Adobe
5K dataset and the PPR10K dataset, showing notable improvements.
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1 Introduction

Color plays a vital role in photography, enhancing focal points, evoking emo-
tions, and enriching storytelling. Whether through vibrant hues or subtle tones,
understanding the importance of colors is crucial for photographers seeking to
evoke speci�c responses. Despite signi�cant advancements in camera technology,
amateurs and professionals still often resort to post-capture image enhancement
to enhance an image's quality. However, manual enhancement can be challenging
for those lacking expertise, time, or a well-developed aesthetic sense.

A potential solution to avoid manual adjustment is to learn a deep net-
work model that can mimic the image editing style of a skilled photographer
or colorist. These methods leverage a dataset of image pairs with the original
and corresponding artist-edited images. It is interesting to consider the tools
provided to the artists for performing the image editing. Many photo editing
software applications (e.g., Adobe Photoshop [1]) provide users with the ability
to manipulate the image based on a small set of �xed colors (e.g., red, green,
yellow, orange, blue, purple). Interestingly, the prede�ned colors selected by
software tools are similar to those linguists have found to be universal across
languages [6], a research topic often referred to as color naming.

Contribution: We propose to leverage the use of color naming decomposition
for image enhancement. In particular, we introduce NamedCurves, a learning-
based image enhancement method that decomposes images into color names and
estimates a tone curve in the form of smooth, di�erential Bezier curves (see Fig-
ure 1). This is followed by an attention-based fusion scheme that combines the
images modi�ed by the individual color curves, simulating local image editing.
We compare our method with several state-of-the-art image enhancement meth-
ods on the MIT-Adobe-5K and PPR10K datasets. Our color naming scheme
outperforms competing methods in terms of PSNR and ∆E.

2 Related Work

Related works are discussed for color naming and data-driven image-based en-
hancement methods that model professional editing styles.

2.1 Color Naming

Color naming is crucial for product designing, photography, and vision research
[3, 24, 28, 35]. Berlin and Kay [6] conducted a study on the basic color lexicon
across various languages and discovered universal semantics. Their seminal anal-
ysis showed that the evolution of basic color vocabularies is in�uenced by visual
physiology, which limits the possible composite categories to a small number
of those. The 11 color names found that most societies and cultures share are:
orange, brown, yellow, white, grey, black, pink, purple, red, green and blue.
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Fig. 2: Van de Weijer et al. [31] color names grouped in the Munsell color array. The
color names are orange, brown, yellow, white, grey, black, pink, purple, red, green and
blue.
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Fig. 3: Van de Weijer et al. [31] color naming method applied pixel-wise to the top-left
image. The other 11 images show the 11 probability color names maps. Each color
is displayed with a di�erent map to aid visualization. Note that some linguistic color
names share approximately the same hue and only di�er in intensity� e.g., pink and
purple. As tone curves are de�ned for all the intensity range we group: orange-brown-
yellow, pink-purple, and white-grey-black. This grouping is represented by the boxes.

Following Berlin and Kay's research, di�erent studies (e.g., [4,31,38]) aimed
at predicting the boundaries between each of the color names. For example,
Figure 2 shows the standard Munsell color array using Van de Weijer et al. [31]
color classi�cation based on color naming.

These methods work in the following manner. Given an RGB value in the
sRGB color space, color naming methods produce an 11-d vector that corre-
sponds to the probability of the RGB value belonging to each of the speci�c color
names listed above. This is visualized in Figure 3, where we show an original
image and the 11-probability maps coded with a color map to aid visualization.
As described in Section 3.2, our method leverages the Van de Weijer et al. [31]
color naming strategy to decompose each image in basic colors. However, we
combine colors with similar hues (e.g., brown and orange) resulting in six color
maps. In Figure 3 the colors grouped are shown in boxes.

2.2 Learned Image Enhancement

The need to provide users with tools to allow easy image enhancement has
grown signi�cantly due to the ease of photo-taking with smartphones. Initially,
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histogram equalization was a primary method for enhancing contrast in im-
ages [25,27]. Subsequently, local operators [2,11] and color correction techniques
based on color constancy [30] were introduced. Since the introduction of the
MIT-Adobe-5K dataset by Bychkovsky et al. [7], which contains 5,000 images
retouched by 5 experts, data-driven methods have emerged as one of the pre-
ferred means to improve image quality.

One category of these data-driven methods involves estimating intermediate
or physical parameters for image retouching. Guo et al. [13] proposed Zero-DCE,
the �rst method to formulate low-light image enhancement as a curve estimation
problem. Their deep network estimates pixel-wise curves to modify the dynamic
range of input images. This groundbreaking work in�uenced subsequent meth-
ods, such as CURL [22], which estimates piecewise linear curves for HSV, RGB,
and CIELab color spaces; FlexiCurve [17], which estimates sets of piecewise
curves and blends them via a Transformer and LTMNet [41] that learns a grid
of tone curves to locally enhance an image. Additionally, Moran et al. [21] in-
troduced DeepLPF, inspired by Photoshop's local �lters tool, which estimates
elliptical, gradual, and polynomial �lters for local image editing. Wang et al. [32]
proposed an alternative approach, estimating intermediate illumination maps for
under-exposed images instead of directly learning image-to-image mappings.

Lookup tables (LUTs) represent another widely used method for image ma-
nipulation, typically manually tuned and �xed in camera imaging pipelines or
photo editing tools. Zeng et al. [39] proposed 3DLUT, a method to learn these 3D
LUTs from annotated data with a small convolutional neural network. Building
upon this, Yang et al. [36] proposed AdaInt, a mechanism to achieve a more �ex-
ible sampling by learning the non-uniform sampling intervals. Wang et al. [33]
also presented a modi�cation of 3DLUT that incorporates spatial information
to compute the image transformation.

Conversely, image-to-image methods estimate directly a mapping to modify
the input images without intermediate steps. Generative adversarial networks
(GANs) are frequently employed for such tasks. Chen et al. [8], Ni et al. [23],
and Jiang et al. [15] proposed unpaired learning schemes using single GANs to
estimate enhanced versions of input images directly.

As in previous methods [17,22,41], we use tone curves to manipulate images.
However, we propose to leverage the use of color naming decomposition and an
attention-based fusion scheme to mimic the image editing style of an expert.

3 Proposed Method

Figure 4 shows an overview of our proposed method, NamedCurves. Our method
aims to enhance a low-quality RGB input image x, by a learned model that out-
puts an enhanced version ŷ. This enhanced image is derived as close as possible
to the expert-retouched image y, based on some objective function L.

Our method consists of four main components, which are detailed in the
following sections, including the loss function used for optimizing the framework.
The approach �rst applies a DNN backbone that standardizes the input image
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Fig. 4: Overview of the proposed method, NamedCurves. Our method aims to enhance
an input image x. First, we use a UNet-like backbone to standardize the input image
into a canonical latent space. Next, we decompose the standardized image ŷb into six
color probability maps (shown color-coded in the �gure to aid visualization). Next, we
learn a set of Bezier curves for each color name to manipulate the standardized image
ŷb, obtaining six distinct globally adjusted images. Finally, an attention mechanism
is used to fuse the edited images using as Query the standardized image ŷb and as
Key and Value the corresponding edited image. Our learning-based method uses an
objective function L to compare the expert-retouched image with our �nal result ŷ.

into a canonical latent space. Next, we use color naming to decompose the image
into six color maps. After color naming decomposition, a neural network learns
a set of Bezier tone curves to manipulate each color map globally. Finally, an
attention mechanism combines the edited images to achieve local editing e�ects.

3.1 Backbone

One challenge faced by learning-based image enhancement methods is that input
images, x, can be captured using di�erent cameras with di�erent settings and
under di�erent lighting conditions. This may impact our ability for consistent
color naming. Similar to the method by Moran et al. [21], we use a UNet-like
backbone to standardize the input images.

Our backbone is inspired by the LPIENet [10] architecture. We use MobileNet
layers (Conv-DWConv-eLU) [14] and a CBAM module [34]�a combination of spa-
tial and channel attention. The backbone consists of three encoder blocks and
two decoder blocks connected by multi-resolution skip connections. Each en-
coder block consists of the following: two MobileNet layers, a CBAM attention
block, and a max-pooling layer. The decoder blocks follow the same structure
except for the max-pooling layers that are replaced by bilinear upsampling lay-
ers. The multi-resolution skip connections consist of three parallel branches of
convolutional layers with di�erent dilation rates. Two of the paths consist of two
Conv-LeakyReLU blocks to extract local information, while the other path con-
sists of three Conv-LeakyReLU-MaxPooling blocks, an AveragePooling and a
LinearLayer to extract global information. As in [12,20,22], we found that skip
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connections at di�erent resolutions improve the performance against backbones
with simple skip connections.

3.2 Color Naming

We aim to decompose the standardized image ŷb into a set of likelihood colors
maps to focus di�erent branches of the model. Due to the importance of memory
colors�the green of the grass or the blue of the sky� in aesthetics [26, 29] we
decided to use Color Naming, a perceptually-based color decomposition.

We used the color naming model from Van de Weijer et al. [31] to obtain the
probability maps for each color name. This model inputs an sRGB color value
and outputs the probability of this color to belong to each of the 11 color naming
categories, namely red, blue, green, yellow, pink, purple, orange, brown, white,

grey, black. When applied to an image, the model operates for each pixel, which
returns a set of probability maps.

We note that some linguistic color names share similar hues, but only dif-
fer in intensity. For example, orange and brown or pink and purple. As tone
curves are de�ned for all the intensity ranges, it will be bene�cial to group these
colors together. To this end, we reduce the set of 11 probability maps to just 6
by grouping orange-brown-yellow, pink-purple, and white-grey-black (referring to
this last one as achromatic). The combined map for these cases is just the addi-
tion of the individual maps, and therefore, they are still probabilities (the sum
of all the maps for a speci�c pixel is 1)�see supplementary for further details.

Figure 4 shows the assignment of an input image to the six color maps.
Note that the images have been color-coded to help visualize their probabilities,
however, the colors associated with these maps are the original RGB values from
the input (see supplemental materials). In the following section, we describe how
each color map conditions a di�erent set of RGB tone curves.

3.3 Bezier Curve Estimation

Similar to prior works [13,17,22], we leverage tone curves to remap the shadows,
midtones, and highlights of the image ŷb conditioned by the color naming prob-
ability maps. Tone curves represent global adjustments of the intensity from the
input level to the output level. The curves are applied pixel-wise in each color
channel as 1D Look-Up Tables. Bennet and Finlayson [5] demonstrated that tone
adjustments are typically simple curves for a large dataset of enhanced images
or can be well-approximated as such. We use Bezier curve parametrization to
generate smooth and continuous tone curves from discrete control points.

Speci�cally, we aim to estimate one global curve for each RGB channel c
and color name n. Each curve is parameterized by M control points. We evenly
distribute these control points along the input axis, with the �rst control point
�xed at (0, 0). Consequently, we only need to estimate the control points' output
axis values instead of the two point coordinates, resulting in M−1 parameters
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Fig. 5: Bezier Control Point Estimator (BCPE). First, we extract 64-D convolutional
feature maps from ŷb using mainly 4 Conv-ReLU blocks. Then, the color naming is
concatenated and passed through 4 Conv-ReLU-MaxPooling and a �nal AveragePooling
layer. The output of the module is ∆P , the unnormalized control points increments.

per curve. Thus, the Bezier formulation Bn,c of a curve can be expressed as:

Bn,c(i) =

M−1∑
m=0

Pn,c
m

(
M−1

m

)
(1− i)(M−1−m)im, (1)

where i ∈ [0, 1] is an image channel pixel, Pn,c
m denotes the m-th control point

for the color name n and channel c, and M is the total number of control points.

The Bezier Control Points Estimator (BCPE) aims to estimate the control
points de�ning the Bezier tonal curves of an image. Figure 5 illustrates the
BCPE, comprising two distinct blocks: the contextual feature extractor and 6
color naming branches. The contextual feature extractor primarily consists of 4
Conv-ReLU blocks and a Dropout, while the color naming branches consist of 4
Conv-ReLU-MaxPooling blocks and a �nal AveragePooling layer to manage the
variable sizes of the images.

The contextual feature extractor computes a 64-d convolutional feature map
from the standardized image ŷb. Each color naming branch receives as input
a concatenation of the 64-d feature maps and the corresponding color naming
probability map. The output of the branch for color name n consists of three
sets of M increments (∆Pn,c

m )
M
m=1, each set corresponding to a curve for a given

color channel c. These increments ∆Pn,c
m do not directly represent the control

points as we impose two di�erent constraints. First, to make the curves mono-
tonically increasing functions, we de�ne ∆Pn,c

m as positive increments relative to
the previous point. Second, we normalize ∆Pn,c

m , ensuring the total increment
between the �rst and last points is 1 and, thus, placing the last point at (1, 1).
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Fig. 6: An example of a Bezier curve (Red branch). The �rst column shows the input
and edited image pixels in which the red color name branch focuses. The center plot
shows the tone RGB curves learned for the red color name, while the right plot displays
a zoomed-in view of the �rst four control points of the red channel.

Consequently, we compute the control points Pn,c
m as the accumulated sum of

the normalized ∆Pn,c
m . This can be formulated as:

Pn,c
m =

1

Sn,c

m∑
k=1

∆Pn,c
k , (2)

where Sn,c =
∑M

k=1 ∆Pn,c
k .

Figure 6 illustrates an example of a Bezier curve. The left column shows the
input and output image pixels with higher red color name probability than 0.2
The center plot shows the tone curves learned for the red color name, while the
right plot displays a zoomed-in view of the �rst four control points of the red
channel. Note how the control points are �xed and evenly distributed along the
input axis, while Pn,c

m de�ne the output axis value and, thus, the curvature of
the tonal curve. The six sets of Bezier curves learned are applied pixel-wise to
the entire standardized image ŷb, yielding six distinct globally-adjusted images.

3.4 Attention-based image fusion

Tone curves allow global color manipulation but cannot mimic local manipula-
tion from experts in the training images. Here, we detail how to fuse these images
via an attention-based mechanism that models their spatial dependencies.

For each of the 6 color name processed images, we use an attention module to
compute a blending weight per image. Speci�cally, we employ ŷb as the Query,
while the corresponding globally-adjusted image serves as the Key and Value.
Initially, we process the input images through 2 Conv-ReLU-MaxPooling blocks,
yielding 16 convolutional feature maps with a broad receptive �eld. In partic-
ular, Q,K, V ∈ RW/8×H/8×16. Finally, we aggregate ŷb using two Conv-ReLU-

Upsampling blocks. After the attention mechanism, we aggregate ŷb via two
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Conv-ReLU-Upsampling blocks. Note that there is a trade-o� between the at-
tention resolution and the computational cost. Downsampling the image by 8
did not introduce noticeable artifacts on the �nal image ŷ after upsampling.

Ultimately, to generate the �nal image ŷ, we compute a weighted average
of the obtained globally- and locally-adjusted images employing the original
color naming probability maps. To mitigate potential artifacts arising from low
probability values, we threshold the probability maps at 0.2, setting smaller
values to 0. Subsequently, we normalize the maps to ensure each pixel sums to
unity before performing the weighted average.

3.5 Loss Function

Our training loss function comprises three terms. The initial term calculates
the L2 loss between the standardized image ŷb and the ground truth y, with a
weighting factor α. The subsequent two terms compute the L2 and SSIM losses
between the output of our model ŷ and y. The primary objective of the �rst term
is to obtain a good enough standardized output by the backbone. The other two
terms are designed to assess the �delity of the �nal output. In our experiments,
we set α to 0.5 (see supplementary for an ablation study on this term). This
value was determined to yield optimal performance and allows the image ŷb to
represent the scene colors accurately. The training loss is de�ned as:

L(ŷb, ŷ, y) = α||y − ŷb||2 + ||y − ŷ||2 + (1− SSIM(y, ŷ)). (3)

4 Experimental Results

4.1 Experimental setup

Datasets: We compare our method with state-of-the-art (SOTA) methods
using the widely used MIT-Adobe-5K dataset [7] and the PPR10K dataset [19].
MIT5K consists of 5000 images captured independently using several DSLR
cameras and retouched by �ve artists. However, although the image content
is the same, di�erent "versions" have emerged due to variations in image pre-
processing and the number of training images. To make a fair comparison with
all the SOTA methods, we have used three versions: (1) DPE [8], (2) UPE [32],
and (3) UEGAN [23]. Speci�cally, DPE splits the data into 2250, 2250, and 500
images for training, validation, and testing, respectively. The last two versions
split the images into 4500 images for training and 500 images for testing. DPE
and UEGAN pre-process the images in the same manner but with di�erent image
sizes, while UPE pre-processes the input images to be under-exposed. Following
[8, 17, 21, 22, 32] we only use the Expert-C retouched images as ground truth.
PPR10K is a portrait photo retouching dataset with 11616 high-quality images
retouched by 3 experts independently. We use the o�cial splits, dividing the
images into 8875 and 2286 for training and testing, respectively. Following [36]
we conducted the experiments on the 360p augmented version which every image
pair has 5 extra input versions with di�erent manual settings. As in [19, 36, 39]
we evaluate our method on the three expert-retouched versions of PPR10K.
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Table 1: Quantitative comparisons on the DPE, UPE, and UEGAN versions of the
MIT-Adobe-5K dataset. �-� means the source code or models are unavailable, or results
for the corresponding metric were not in the original paper.

MIT-5K Method PSNR ↑ SSIM ↑ LPIPS ↓ ∆E00 ↓ ∆Eab ↓ Time (ms)

DPE

DPE [8] 23.80 0.900 - - - -
DeepLPF [21] 23.93 0.903 0.040 7.00 8.05 136
CURL [22] 24.04 0.900 - - - 102
FlexiCurve [17] 24.37 0.920 0.060 - - -
NamedCurves (Ours) 24.91 0.927 0.038 6.60 7.82 26

UPE

DPE [8] 22.15 0.850 0.108 - - -
UPE [32] 23.04 0.893 0.158 - - -
LTMNet [41] 24.27 0.913 0.068 - - -
DeepLPF [21] 24.48 0.887 0.103 6.89 7.77 136
NamedCurves (Ours) 25.20 0.906 0.047 6.54 7.58 26

UEGAN

InstructIR [9] 24.65 0.900 - - 7.61 -
3DLUT [39] 25.29 0.923 0.043 6.76 7.55 13
SepLUT [37] 25.47 0.921 0.042 6.71 7.49 10
AdaInt [36] 25.49 0.926 0.041 6.69 7.47 13
NamedCurves (Ours) 25.59 0.936 0.038 6.07 7.40 26

Implementation Details: We trained our model using Adam [16], an initial
learning rate 1e-4, reduced by 50% every 50 epochs. We use horizontal �ips
for augmenting the training data. We chose the model with the best validation
∆E00 in the DPE version of the MIT5K, while we trained for a �xed 200 and
100 epochs for the other versions of MIT5K and PPR10K, respectively.

4.2 Comparison with SOTA Methods

We compare our method with SOTAmethods using the MIT5K and the PPR10K
datasets, using the corresponding evaluation metrics. Speci�cally, in the MIT5K
comparisons, we used PSNR, SSIM, LPIPS [40], ∆E00 and ∆Eab. MIT5K results
are presented in Table 1. We also report the inference time for a 480p image on
an AMD EPYC 7642 and a single NVIDIA A40. Our full architecture outper-
forms contemporary curve estimation methods; CURL [22], FlexiCurve [17] and
LTMNet [41] on the DPE and UPE versions of MIT5K. Similarly, our method
outperforms all-in-one, image-to-image, and LUT-based methods across all the
versions. Table 2 shows results on the PPR10K dataset. Following [19, 36], we
used PSNR and ∆Eab to compare our method with the state-of-the-art. As the
other methods did not compute SSIM, LPIPS and ∆E00 and the pre-trained
models are unavailable, we report these metrics for our model in the supplemen-
tary material. We outperform all the contemporary methods on both PSNR and
∆Eab on the three expert versions of the dataset.

Figure 7 provides several qualitative comparisons, showing examples from
both the MIT5K and the PPR10K datasets in Figure 7a and 7b, respectively. Our
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(a) MIT-5K dataset qualitative results.
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(b) PPR10K dataset qualitative results.

Fig. 7: Qualitative comparisons on the MIT-5K (Figure 7a) and PPR10K datasets
(Figure 7b). On the bottom-right of each image we display the PSNR and ∆E00.

Table 2: Quantitative comparisons the PPR10K dataset. We only compute mean
PSNR and ∆Eab since most other methods do not have models available for inference.

PPR10K Expert A Expert B Expert C

Method PSNR ↑ ∆Eab ↓ PSNR ↑ ∆Eab ↓ PSNR ↑ ∆Eab ↓

HDRNet [18] 23.93 8.70 23.96 8.84 24.08 8.87
3DLUT [39] 25.64 6.97 24.70 7.71 25.18 7.58
SepLUT [37] 26.28 6.59 25.23 7.49 25.59 7.51
AdaInt [36] 26.33 6.56 25.40 7.33 25.68 7.31
NamedCurves (Ours) 26.81 6.48 25.91 7.18 25.69 7.27

method provides visually appealing results that resemble the expert-retouched
version regarding color �delity. In Figure 7a, for instance, our method accurately
recti�es color casts in the �rst two rows. Lastly, in the third row, our method
demonstrates superior performance in enhancing nighttime images. Similarly,
in Figure 7b our method outperforms AdaInt [36] in replicating the expert-
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Table 3: Ablation studies on the contributions of each module of our proposed method.

# Backbone Curves CN Att. WN-Avg PSNR ↑ SSIM ↑ ∆E00 ↓

1 6 ✓ ✓ ✓ 23.40 0.912 8.87
2 ✓ 23.74 0.916 8.68
3 ✓ 1 24.09 0.921 7.53
4 ✓ 6 24.24 0.922 7.50
5 ✓ 6 ✓ 24.56 0.926 7.07
6 ✓ 6 ✓ ✓ 24.68 0.926 6.88
7 ✓ 6 ✓ ✓ 24.60 0.926 6.92
8 ✓ 6 ✓ ✓ ✓ 24.91 0.927 6.60

retouched image on the PPR10K-A dataset. This is particularly noticeable in
regions such as the background brown wall (�rst row) and the global color tem-
perature (last row).

We provide additional qualitative examples in Figure 8. The top row shows
the outcomes generated by the methods, while the bottom row displays the per-
pixel ∆E00 error maps. In the �rst row, the other methods struggle to address
color cast issues e�ectively, leading to signi�cant ∆E00 values across the en-
tire image. Conversely, our method demonstrates superior performance, yielding
minimal errors con�ned primarily to small regions. The second image has two
distinct areas: one characterized by intricate details and the other by a plain
surface. DeepLPF [21] exhibits artifacts, such as the elliptical distortion in the
grey area. Similarly, 3DLUT [39] and AdaInt [36] show limitations by enhancing
properly only one of the image regions, thereby resulting in substantial errors
in the other segment. In contrast, our method consistently enhances the pho-
tograph across the entire image by seamlessly integrating both local and global
adjustments.

User Study: We compared our method against AdaInt [36] and SepLUT [37]
following a two-alternative forced choice (2AFC), performed in a completely
black room with a monitor set to sRGB. We randomly selected 25 images from
both MIT5K and PPR10K datasets. 15 observers took part, all tested for col-
orblindness with the Ishihara test. Results analyzed using Thurstone Case V
(larger means better) were: NamedCurves: 1.12; AdaInt: -0.38; SepLUT: -0.74.
Our method is statistically signi�cantly better than the other two �95% con�-
dence interval is 0.33.

4.3 Ablation studies

In this section, we choose the DPE version of MIT5K to conduct several abla-
tion studies to verify the proposed method. We performed experiments to under-
stand the e�ectiveness of the individual modules used by our framework. Table 3
presents the results for various combinations of the modules of our method. We
report PSNR, SSIM, and ∆E00. Throughout the experiments, we consistently
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Fig. 8: Qualitative results of two images of the MIT-Adobe-5K. The �rst column
presents the input and the expert-retouched image. The top row shows the estimated
enhanced version of the input image of DeepLPF [21], 3DLUT [39], AdaInt [36] and
our method. Under each image, we present the ∆E00 error map. On the bottom-right
of each image, we display the mean ∆E00.

utilize the backbone while incrementally incorporating di�erent modules of our
method. The column labeled Curves indicates the number of RGB Bezier curves
utilized and, consequently, the number of globally adjusted images produced.
The color naming column (CN ) speci�es whether the color naming probability
maps are concatenated with the 64-d feature maps used by the Beizer curve ma-
nipulation. Note that if we use the color naming probability maps we must use
six curves. The Attention (Att.) column indicates whether we apply local modi�-
cations to the globally adjusted images before fusing them. Finally, the WN-Avg

column denotes whether the experiment employs the color naming maps to weigh
the images before blending them. In cases where we do not use WN-Avg and
there are multiple output images, we simply average them.

This table shows how combining the di�erent modules of our model improves
the performance. Each of our additions improves the result. Experiment 1 em-
phasizes the importance of the backbone of our model. In detail, color naming
modules produce the largest boosts in performance. We gain 0.32 dB in PSNR
and 0.43 in ∆E00 when we concatenate the color naming maps to the Bezier
Control Point Estimator feature maps - experiment 5. Furthermore, we also
gain 0.31 dB in PSNR and 0.32 in ∆E00 when we use the color naming maps to
weight the �nal average - experiment 8.

We further investigate assessing our backbone's impact on our model's per-
formance. We evaluate by using di�erent backbones from other methods. Table
4a reports the results of our experiments. Notably, our proposed backbone yields
superior performance compared to other methods' backbones, namely UNet [21],
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Table 4: Ablation studies for the (a) backbone architecture and (b) the number of
control points in the Bezier curves.

Backbone PSNR ↑ SSIM ↑ ∆E00 ↓

UNet [21] 24.49 0.920 7.04
LPIENet [10] 24.51 0.920 7.07
TED [22] 24.70 0.925 6.97
NamedCurves 24.91 0.927 6.60

(a) Ablation on backbone

N PSNR ↑ SSIM ↑ ∆E00 ↓

5 24.69 0.924 6.82
7 24.88 0.926 6.76
11 24.91 0.927 6.60

16 24.52 0.920 6.85

(b) Ablation on number of control points

ΔE = 5.12 ΔE = 4.40 ΔE = 4.24 ΔE = 4.20

Input DeepLPF [21] 3DLUT [39] AdaInt [36] NamedCurves Ground Truth

Fig. 9: Example of an image with just two dominant colors. Our method still outper-
forms the others, but does not obtain the same level of advantage.

TED [22] and LPIENet [10]. Importantly, irrespective of the utilized backbone,
our method consistently outperforms the previous state-of-the-art models on
this DPE version of MIT5K. This highlights the signi�cance of leveraging color
naming as the main contributing factor to the performance of our method.

We perform a �nal ablation study on the number of control points N . We
tested our method with 5, 7, 11, and 16 control points for each Bezier curve. In
Table 4b we report the PSNR, SSIM, and ∆E00 of every experiment. We found
that 11 control points �every 0.1 in the input axis� works best for our method.

4.4 Limitations

Our method aims to replicate the image style of a skilled photographer estimat-
ing a series of tone curves for each color name. However, our method loses part
of its advantage compared to the previous SOTA methods in scenarios where the
image comprises few color regions. In such instances, di�erent branches of the
method receive low-weighting values, resulting in an almost global adjustment
technique (e.g. image dominated by just two color names, see Figure 9).

5 Conclusion

This paper introduced a new image enhancement model based on color nam-
ing that outperforms the current state-of-the-art across various versions of the
Adobe 5K and the PPR10K datasets. Our approach uses expert-edited images
for learning and explicitly separates the image into a small set of named colors.
It learns to adjust the image for each speci�c named color and then combines
the images using an attention-based fusion mechanism.
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Supplementary Material

The supplemental material provides additional information that could not be
incorporated into the main paper due to page limit constraints. Speci�cally, we
discuss (1) Adobe's color decomposition method, (2) more information on color
naming probability maps, (3) further justi�cations on the color names grouping,
(4) loss function parameter α ablation study, and (5) additional results.

Adobe Color Decomposition

Adobe Photoshop and Adobe Lightroom are software tools to allow photo ed-
itors the ability to �ne-tune individual colors within an image. Our method is
inspired by these tools. In particular, the software decomposes the image into a
prede�ned set of colors (red, orange, yellow, green, cyan, blue, purple and pink),
enabling users to independently manipulate the hue, saturation, and luminance
of each color. In Figure 10, we show two screenshots of the tools and examples
edited using this feature. For each example, we display the top of the input image
alongside the default parameter values for the color to �ne-tune. We show the
edited image in the bottom images alongside the corresponding slider adjust-
ments. In the left example, we demonstrate the modi�cation of blue, illustrating
alterations in the sky while preserving non-blue regions. In the right example,
we focus on adjusting purple, a non-primary color. This allows us to selectively
modify speci�c purple elements, such as the girl's clothing, without a�ecting
the rest of the image. Notably, adjustments to the desired color sliders induce
changes across all three color channels, as evident in the histograms provided in
the top-right corner.

Color Naming Probability Maps

As discussed in the main paper, we use the color naming method proposed
by Van de Weijer et al. [31]. This method is applied on each pixel. Given an
sRGB image, this method generates 11 probability maps, each corresponding to
a distinct color name: red, blue, green, yellow, pink, purple, orange, brown, white,
grey, black. As discussed in the main paper, we group certain color names due
to their similar hues, di�ering primarily in intensity only. Speci�cally, we merge
orange-brown-yellow, pink-purple, and white-grey-black (referring to this last one
as achromatic). The combined maps are obtained by summing the individual
probability maps. In the end, we obtain probability maps for 6 color categories.

Figure 11 illustrates these color-naming probability maps using di�erent vi-
sualizations. In the �rst two examples, we depict the 11 color naming probability
maps using the same color map for all the color names. In the third and fourth
examples, we show the image pixels exceeding 0.2 probability for the 11 color
names and the 6 color-category version, respectively. In this case, the pixels in
the maps represent the real sRGB values in the original image. Finally, in the
last example, we use the same visualization method as in the main submission
(i.e., Figures 1, 3, and Figure 4). We also account for the probabilities assigned



NamedCurves: Learned Image Enhancement via Color Naming 19

Fig. 10: Two examples of the Adobe Color Decomposition tool. In the left example,
we manipulate the hue, saturation, and luminance of the color blue, while in the right
example, we modify the color purple.

to each color to emphasize the probability aspect of color naming. In particular,
for each pixel and color name, we compute:

n = (1− pi)Iw + piIi, (4)

where pi represents the color name probability of pixel i, Iw denotes a white RGB
value (i.e., [1, 1, 1]) and Ii signi�es the RGB value of pixel i. It is important to
note that the colors represented in these maps are not the original RGB values
of the image, as they are scaled by the color naming probability p.

Color Names Grouping

We used the color naming model from Van de Weijer et al. [31] to obtain the
probability map for each color name, namely red, blue, green, yellow, pink, pur-

ple, orange, brown, white, grey, black. However, we note that some linguistic
color names share similar hues, but only di�er in intensity. As tone curves are
de�ned for all the intensity ranges, it will be bene�cial to group these colors to-
gether. To this end, we reduce the set of 11 probability maps to just 6 by group-
ing orange-brown-yellow, pink-purple, and white-grey-black (referring to this last
one as achromatic). In Figure 12, we visually show the reason for reducing the
number of Color Naming channels to just 6. The �gure illustrates 2D plots de-
picting the relationship between input and output intensity values for pixels
with probability > 0.5 belonging to each speci�c color. For example, in the case
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Fig. 11: Van de Weijer et al. [31] color naming method applied pixel-wise to �ve
images. The color naming probability maps of the �rst two examples are displayed
with the same color map. The third and fourth rows present visualization examples
where we display the image pixels whose color naming map is higher than 0.2. The
last row presents the same visualization as in the main paper, where we also take into
consideration the probability value.
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Fig. 12: Joined color names with respect to the intensity value. Pixels with probability
> 0.5 are plotted.

Table 5: Ablation study on the α parameter of the loss function on the MIT5K-DPE
dataset.

α PSNR ∆E00

0 24.58 6.76
0.5 24.91 6.60

1 24.73 6.62

of orange-brown-yellow, brown is only present at low intensities, while orange
dominates at mid-intensities and yellow at top intensities. The same analysis
extends to the other joined color channels. Our method aims to learn a curve to
be applied at all the intensity levels. Thus, incorporating information spanning
all the intensity levels is bene�cial. To also show this numerically, we experi-
mented using our model with the 11 color terms, obtaining a PSNR of 24.72 dB
(in comparison to 24.91 dB with 6 channels) in the MIT5K-DPE dataset.

Loss Function Ablation Study

Following prior works (DeepLPF [21], CURL [22]) our method starts with a
backbone that serves to standardize the input. We consider three loss terms: the
l2 loss between the output of the backbone and the reference image and the l2
and SSIM losses between the �nal output and the reference image. We chose to
weight the backbone loss by α = 0.5. An ablation study is shown in Table 5,
where we can see that α = 0.5 gives better results than α = 0 (i.e., ignore the
backbone output) and α = 1 (i.e., heavily weight backbone output).

Additional MIT5K and PPR10K qualitative results

Figure 13 and Figure 14 show additional results from the MIT5K and PPR10K,
respectively. We compare our method with DeepLPF [21], 3DLUT [39] and
AdaInt [36].
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Table 6: Additional quantitative results of our method on the PPR10K dataset.
No other method computes these metrics in their respective papers for the PPR10K
dataset.

Expert SSIM ↑ LPIPS ↓ ∆E00 ↓

A 0.957 0.031 5.46
B 0.956 0.032 5.61
C 0.949 0.032 5.68

Additional PPR10K quantitative results

Table 6 reports SSIM, LPIPS and ∆E00 of our model on experts A, B and C of
PPR10K. These metrics are not computed by other methods in their respective
papers.
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Input DeepLPF 3DLUT AdaInt NamedCurves

ΔE = 5.52 ΔE = 6.91 ΔE = 6.73 ΔE = 4.36

ΔE = 7.34 ΔE = 4.20 ΔE = 5.60 ΔE = 3.56

ΔE = 9.93 ΔE = 10.47 ΔE = 10.26 ΔE = 5.12

Ground Truth
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ΔE = 8.28 ΔE = 6.21 ΔE = 5.72 ΔE = 3.09

ΔE = 6.28 ΔE = 6.47 ΔE = 6.78 ΔE = 2.89

ΔE = 8.00 ΔE = 5.70 ΔE = 5.61 ΔE = 2.84

Fig. 13: Additional qualitative results on the MIT5K dataset. From left to right: the
input image, DeepLPF [21], 3DLUT [39], AdaInt [36], our method, and the ground
truth. ∆E00 is shown in the bottom-right corner of each image.
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Input AdaInt NamedCurves Ground Truth

ΔE = 6.35 ΔE = 5.37

ΔE = 7.02 ΔE = 5.07

ΔE = 11.38 ΔE = 4.82

ΔE = 7.33 ΔE = 3.46

ΔE = 11.60 ΔE = 6.60

ΔE = 9.12 ΔE = 6.21

Fig. 14: Additional qualitative results performed using the PPR10K dataset. From
left to right: the input image, AdaInt [36], our method, and the ground truth. ∆E00 is
shown in the bottom-right corner of each image.
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