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Abstract

Domain adaptation (DA) aims to transfer the knowledge
learned from a source domain to an unlabeled target domain.
Some recent works tackle source-free domain adaptation
(SFDA) where only a source pre-trained model is available
for adaptation to the target domain. However, those methods
do not consider keeping source performance which is of high
practical value in real world applications. In this paper, we
propose a new domain adaptation paradigm called General-
ized Source-free Domain Adaptation (G-SFDA), where the
learned model needs to perform well on both the target and
source domains, with only access to current unlabeled target
data during adaptation. First, we propose local structure
clustering (LSC), aiming to cluster the target features with its
semantically similar neighbors, which successfully adapts
the model to the target domain in the absence of source
data. Second, we propose sparse domain attention (SDA), it
produces a binary domain specific attention to activate dif-
ferent feature channels for different domains, meanwhile the
domain attention will be utilized to regularize the gradient
during adaptation to keep source information. In the exper-
iments, for target performance our method is on par with
or better than existing DA and SFDA methods, specifically
it achieves state-of-the-art performance (85.4%) on VisDA,
and our method works well for all domains after adapting
to single or multiple target domains. Code is available in
https://github.com/Albert0147/G-SFDA.

1. Introduction

Though achieving great success, deep neural networks
typically require a large amount of labeled data for training.
However, collecting labeled data is often laborious and ex-
pensive. To tackle this problem, Domain Adaptation (DA)
methods aim to transfer knowledge learned from label-rich
datasets (source domains) to other unlabeled datasets (tar-
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get domains), by reducing the domain shift between labeled
source and unlabeled target domains.

A crucial requirement in most DA methods is that they
require access to the source data during adaptation, which
is often impossible in many real-world applications, such as
deploying domain adaptation algorithms on mobile devices
where the computation capacity is limited, or in situations
where data-privacy rules limit access to the source domain.
Because of its relevance and practical interest, the source-
free domain adaptation (SFDA) setting, where instead of
source data only source pretrained model is available, has
started to get traction recently [14, 15, 18, 20, 46]. Among
these methods, SHOT [20] and 3C-GAN [18] are most re-
lated to this paper which is for close-set DA where source
and target domains have the same categories. 3C-GAN [18]
is based on target-style image generation by a conditional
GAN, and SHOT [20] proposes to transfer the source hy-
pothesis, i.e. the fixed source classifier, to the target data,
together with maximizing mutual information.

However, in many practical situations models should per-
form well on both the target and source domain. For example,
we would desire a recognition model deployed in an urban
environment which works well for all four seasons (domains)
after adapting model to the seasons sequentially. As shown
in [47], the source performance of some DA methods will de-
grade after adaptation even with source data always at hand.
And the current SFDA methods focus on the target domain
by fine tuning the source model, leading to forgetting on old
domains. Thus, existing methods cannot handle the situation
described above. A simple way to address this setting is by
just storing the source and target model, however, we aim
for memory-efficient solutions that scale sub-linear with the
number of domains. Therefore, in this paper, we propose a
new DA paradigm where the model is expected to perform
well on all domains after source-free domain adaptation. We
call this setting Generalized Source-free Domain Adaptation
(G-SFDA). For simplicity, in the paper we will first focus on
a single target domain, and then we describe how to extend
to Continual Source-free Domain Adaptation.

https://github.com/Albert0147/G-SFDA


In this paper, to perform adaptation to the target domain
without source data, we first propose Local Structure Cluster-
ing (LSC), that clusters each target feature together with its
nearest neighbors. The motivation is that one target feature
should have similar prediction with its semantic close neigh-
bors. To keep source performance, we propose to use sparse
domain attention (SDA), applied to the output of the feature
extractor, activating different feature channels depending
on the particular domain. The source domain attention will
be used to regularize the gradient during target adaptation
to prevent forgetting of source information. With LSC and
SDA, the adapted model can achieve excellent performance
on both source and target domains. In the experiments, we
show that for target performance our method is on par with
or better than existing DA and SFDA methods on several
benchmarks, specifically achieving state-of-the-art perfor-
mance on VisDA (85.4%), while simultaneously keeping
good source performance. We also extend our method to
Continual Source-free Domain Adaptation, where there is
more than one target domain, further demonstrating the effi-
ciency of our method.

We summarize our contributions as follows:

• We propose a new domain adaptation paradigm denoted
as Generalized Source-free Domain Adaptation (G-
SFDA), where the source-pretrained model is adapted
to target domains while keeping the performance on the
source domain, in the absence of source data.

• We propose local structure clustering (LSC) to achieve
source-free domain adaptation, which utilizes local
neighbor information in feature space.

• We propose Sparse domain attention (SDA) which acti-
vates different feature channels for different domains,
and regularizes the gradient of back propagation dur-
ing target adaptation to keep information of the source
domain.

• In experiments, we show that where existing methods
suffer from forgetting and obtain bad performance on
the source domain, our method is able to maintain
source domain performance. Furthermore, when fo-
cusing on the target domain our method is on par with
or better than existing methods, especially we achieve
state-of-the-art target performance on VisDA.

2. Related Works
Here we discuss related domain adaptation settings.

Domain Adaptation. Early domain adaptation methods
such as [21, 37, 39] adopt moment matching to align feature
distributions. Inspired by adversarial learning, DANN [7]
formulates domain adaptation as an adversarial two-player

game. CDAN [22] trains a deep networks conditioned on
several sources of information. DIRT-T [35] performs do-
main adversarial training with an added term that penalizes
violations of the cluster assumption. Domain adaptation has
also been tackled from other perspectives. MCD [31] adopts
prediction diversity between multiple learnable classifiers to
achieve local or category-level feature alignment between
source and target domains. DAMN [3] introduces a frame-
work where each domain undergoes a different sequence of
operations. AFN [44] shows that the erratic discrimination
of target features stems from much smaller norms than those
found in source features. SRDC [38] proposes to directly
uncover the intrinsic target discrimination via discriminative
clustering to achieve adaptation. The most relevant paper
to our LSC is DANCE [29], which is for universal domain
adaptation and based on neighborhood clustering. But they
are based on instance discrimination [43] between all fea-
tures, while our method applies consistency regularization
on only a few semantically close neighbors.

Source-free Domain Adaptation. Normal domain adap-
tation methods require access to source data during adap-
tation. Recently, there are several methods investigating
source-free domain adaptation. USFDA [14] and FS [15]
explore the source-free universal DA [48] and open-set
DA [32], DECISION [2] is for multi-source DA. Related to
our work are SHOT [20] and 3C-GAN [18], both for close-
set DA. SHOT proposes to fix the source classifier and match
the target features to the fixed classifier by maximizing mu-
tual information and pseudo label. 3C-GAN synthesizes
labeled target-style training images based on conditional
GAN. Recently, BAIT [46] extends diverse classifier based
domain adaptation methods to also be applicable for SFDA.
Though achieving good target performance, these methods
cannot maintain source performance after adaptation. Other
than these methods, we aim to maintain source-domain per-
formance after adaptation.

Continual Domain Adaptation. Continual learning
(CL) [13, 19, 23, 25] specifically focuses on avoiding catas-
trophic forgetting when learning new tasks, but it is not
tailored for DA since new tasks in CL usually have labeled
data. Recently, a few works [4, 26, 36] have emerged that
aim to tackle the Continual Domain Adaptation (CDA) prob-
lem. [4] uses sample replay to avoid forgetting together with
domain adversarial training, [26] builds a domain relation
graph, and [36] builds a domain-specific memory buffer for
each domain to regularize the gradient on both target and
memory buffer. Although these methods achieve good per-
formance, they all demand access to source data. And [16]
is source-free but they focus on class incremental single
target domain adaptation where there is only one-shot la-
beled target data per class, while our method is related to
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Figure 1: Local Structure Clustering (LSC). Some target features from source model will deviate from dense source feature
regions due to domain shift. LSC aims to cluster target features by its semantically close neighbors (linked by black line).

domain incremental learning and can be deployed for con-
tinual source-free domain adaptation.

3. Methods
In this section, we first propose an approach for source-

free unsupervised domain adaptation. Then we introduce
our method to prevent forgetting of the knowledge of the
source model. Next, we elaborate how to unify the two
modules to address generalized source-free domain adap-
tation (G-SFDA), and train a domain classifier for domain-
agnostic evaluation. Finally, we extend our method to con-
tinual source-free domains.

3.1. Problem Setting and Notations

We denote the labeled source domain data with ns, the
samples as Ds = {(xs

i , y
s
i )}

ns
i=1, where the ysi is the corre-

sponding label of xs
i , and the unlabeled target domain data

with nt samples as Dt = {xt
j}

nt
j=1. The number of classes

is C. In the source-free setting we consider here Ds is only
available during model pretraining. Our method is based
on a neural network, which we split into two parts: a fea-
ture extractor f , and a classifier g that only contains one
fully connected layer. The output of network is denoted as
p(x) = g(f(x)) ∈ RC .

3.2. Local Structure Clustering

Most domain adaptation methods aim to align the feature
distributions of the source and target domain. In source-free
unsupervised domain adaptation (SFDA) this is not evident
since the algorithm has no longer access to source domain
data during adaptation. We identify two main sources of
information that the trained source model provides with
respect to the target data: a class prediction p(x) and a
location in the feature space f(x). The main idea behind our
method is that we expect the features of the target domain to
be shifted with respect to the source domain, however, we
expect that classes still form clusters in the feature space,
and as such, we aim to move clusters of data points to their
most likely class prediction.

Our algorithm is illustrated in Fig. 1 (left). Some target
features (at the start of adaptation) deviate from the corre-

sponding dense source feature region due to domain shift.
This could result in wrong prediction of the classifier. How-
ever, we assume that the target features of the same class are
clustered together. Therefore, the nearest neighbors of tar-
get features have a high probability to share category labels.
To exploit this fact, we encourage features close in feature
space to have similar prediction to their nearest neighbors.
As a consequences clusters of points that are close in feature
space will move jointly towards a common class. As shown
in the right of Fig. 1, this process can correctly classify
target features which would otherwise have been wrongly
classified.

To find the semantically close neighbors, we build a fea-
ture bank F = {(f(xi))}xi∈Dt which stores the target fea-
tures. This is similar to methods in unsupervised learn-
ing [43, 10, 50, 40] or domain adaptation [29]. The method
[29] is for universal domain adaptation, and considers sim-
ilarity based on instance discrimination [43] between all
features in their loss function, and [10, 40, 50] perform un-
supervised learning using neighborhood information. The
work [40] needs pretext training and the nearest neighbor-
hood images is retrieved only once by the embedding net-
work from the pretext stage to train another classification
network, while [10, 50] are also based on instance discrimi-
nation between all target features, and utilize neighbourhood
selection to further improve the cluster performance. Dif-
ferent from them, we only use a few neighbors from the
feature bank to cluster the target features with a consistency
regularization.

Next, we build a score bank S = {(g(f(xi))}xi∈Dt
stor-

ing corresponding softmaxed prediction scores. The local
structure clustering is achieved by encouraging consistent
predictions between the k-nearest features applying the fol-
lowing loss:

LLSC = − 1

n

n∑
i=1

K∑
k=1

log[p(xi) · s(Nk)] +

C∑
c=1

KL(p̄c||qc)

N{1,..,K} = {Fj | top-K(cos (f (xi) ,Fj) ,∀Fj ∈ F)},

p̄ =
1

n

n∑
i=1

pc(xi) , and q{c=1,..,C} =
1

C

(1)
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Figure 2: (a-c): Forward and Backward pass for two domains. f, g denote feature extractor, classifier. As and At are the sparse
source and target domain attention.

Here, we first find the k-nearest neighbors N in the feature
bank for each current target feature based on the cosine simi-
larity. We minimize the negative log value of the dot product
between prediction score of the current target sample xi and
the stored prediction scores s(Nk) of N , which is the first
term in Eq. 1, aiming to encourage consistent predictions
between the feature and its a few neighbors. The second term
avoids the degenerated solution [34, 8], where the prediction
of classes in the target data is highly imbalanced, by en-
couraging prediction balance. Here pc is the empirical label
distribution; it represents the predicted possibility of class c
and q is a uniform distribution. And we simply replace the
old items in the bank with the new ones corresponding to
current mini-batch. In the experiments, we will prove the
effectiveness of the proposed LSC by verifying whether the
nearest neighbors are sharing the right predicted label.

3.3. Sparse Domain Attention

Under the G-SFDA setting, we want to not only have high
target performance, but maintain source performance with-
out accessing source data. Our work is inspired by continual
learning (CL) methods [1, 25, 33] which put constraints
on each layer for leaving out capacity for new tasks and
prevent forgetting of previous tasks. We propose to only
activate parts of the feature channels of f(x) ∈ Rd for dif-
ferent domains, by a sparse domain attention (SDA) vector
Ai∈{s,t} ∈ Rd, which contain close-to binary values that
will mask the output of the feature extractor. Inspired by
[33], we adopt an embedding layer to automatically produce
the domain adaptation.

Ai∈[s,t] = σ(100 · ei) (2)

where ei is the output of an embedding layer, σ is sigmoid
function, and the constant 100 is to ensure a near-binary
output, but still differentiable. As andAt are both trained on
the source domain and are fixed during the adaptation to the
target domain. Furthermore, when training on source, we
use sparsity regularization and gradient compensation for the
embedding layer just like [33]. Thus, we use SDA to build
domain specific information flows where some channels are
specific for each domain. We can maintain the source infor-

mation by regularizing the gradient flowing into channels
that are activated in the source mask.

For training the source domain, we apply the source atten-
tion As, as shown in Fig. 2(a), the output is g(f(x)⊙As).
In Fig. 2(b), we show that when adapting to the target do-
main, we use the sparse target attention At for the forward
pass. To prevent forgetting, there should be no update to the
feature channels which are present in As. The reasons are
twofold: firstly, the information of those channels is the only
source information provided during source-free adaptation
to the target domain; keeping this information may boost
target adaptation, and secondly more importantly, under the
G-SFDA setting we hope to keep the source performance
after adapting, therefore target adaptation should not disturb
the information flowing to those channels of feature asso-
ciated with source domain. As shown in Fig. 2(c), during
target adaptation we propose to use source attention As to
regularize the gradients flowing to the classifier and feature
extractor during back propagation:

Wfl ←Wfl − (Ās1
T
h )⊙

∂L
∂Wfl

(3)

Wg ←Wg −
∂L
∂Wg

⊙ (1CĀT
s ) (4)

where ⊙ denotes element wise multiplication, 1k is an all-
ones vector of dimensionality k, Ās = 1 − As, Wfl ∈
Rd×h is the weight of the last layer in feature extractor,
Wg ∈ RC×d is the weight of the classifier. Here the source
attention As is used to regularize the gradient flowing into
the source activated channels (for feature extractor) and also
the corresponding neurons in the classifier. With Eq. 3 and
Eq. 4, the source information is expected to be preserved.

In continual learning literature the masking of
weights [24, 25] and activations [1, 27, 33] has been stud-
ied. Our method is related to the activation mask methods.
However, other then these methods, our masking only pre-
vents forgetting in the last two layers Wfl and Wg. We
ensure that the features that are crucial for source domain
performance are only minimally changed, and that the target
domain specific features are used to address the domain shift.
Our approach does not prevent all forgetting of the source



Algorithm 1 Generalized Source-free Domain Adaptation
Require: Ds (only for source model training), Dt

1: Pre-train model on Ds with both As and At from SDA
2: Build feature bank F and score bank S for Dt

3: while Adaptation do
4: Sample batch T from Dt

5: Update F and S corresponding to current batch T
6: Compute Llsc based on F and S ▷ Eq. 1,5
7: Update network with SDA regularization ▷ Eq. 3,4
8: end while

domain, since we do not regularize the gradient of the inner
layers in feature extractor.

3.4. Unified Training
In this section, we first illustrate how to unify the training

with SDA and LSC. As illustrated in Algorithm 1, first we
train the model on Ds with the cross-entropy loss, with
both source and target domain attention As, At, this is to
provide a good initialization for target adaptation where only
At is engaged. Then, we adapt the source model to the
target domain with target attention At and only access to
Dt with Eq. 1. During backpropagation we regularize the
gradients according to Eq. 3 and Eq. 4. Unlike training
with only LSC in Sec. 3.2, here we build the feature bank as
F = {(f(xi)⊙At)}xi∈Dt

, where we abandon the irrelevant
channels since those channels will not contribute to current
prediction and may contain noise. And for the same reason
when using k-nearest neighbors, we also apply the target
attention to the feature, so the N{1,..,K} in Eq. 1 turns into:

N{1,..,K} = {Fj | top-K(cos (f (xi)⊙At,Fj) ,∀Fj ∈ F)}
(5)

Domain-ID estimation. In the experimental section, we
will consider both G-SFDA with (domain-aware) and with-
out (domain-agnostic) access to the domain-id at inference
time. In the more challenging setting the domain-ID is not
available, and needs to be estimated. Therefore, we propose
to train a domain classifier which takes in feature f(x) to
estimate the domain-ID of the test samples, by only stor-
ing a very small set of images of the source domain. We
will show in the experiments that we obtain similar results
in the challenging domain-agnostic setting as in the easier
domain-aware setting.

3.5. Continual Source-free Domain Adaptation

Here we illustrate how to extend our method to continual
source-free domain adaptation, where the model is adapted
to a sequence of target domains with only access to cur-
rent target domain data. Assuming that there are Nt target
domains. For source pretraining we train with all domain
attention As and {Ati}i=1..Nt from SDA, for a good initial-
ization as mentioned before. And when adapting to the j-th

(a) (b)

Figure 3: (a) Training curves on task Ar→Cl of Office-Home
dataset. (b) Ablation study of different K on VisDA.

Figure 4: Ablation study of SDA on VisDA, which has
12 classes. Accn means the percentage of target features
which share the same predicted label with its 3 nearest
neighbors, and Accnp means the percentage among above
features which have the correct shared predicted class.

target domain, we compute A′ which considers all domain
attention except the current one. We replace the As in Eq. 3
and Eq. 4 with A′ for current gradient regularization:

A′ = max(A′,Ati), ∀i ∈ {1, .., Nt} \ j (6)

where max is an element-wise operation and A′ is initial-
ized from As. Using A′ for gradient regularization means
training on one target domain should not influence others.

4. Experiments
Datasets. Office-Home [41] contains 4 domains (Real, Cli-
part, Art, Product) with 65 classes and a total of 15,500
images. VisDA [28] is a more challenging dataset with 12
classes. Its source domain contains 152k synthetic images
while the target domain has 55k real object images.
Evaluation. We mainly compare with existing methods un-
der two different settings, one is the normal DA and SFDA
setting where target performance is the only focus. Another
is our proposed G-SFDA setting, where the adapted model
is expected to have good performance on both source and
target domains after source-free domain adaptation. In this
setting, we compute the harmonic mean between source and
target accuracy: H = 2∗AccS∗AccT

AccS+AccT
, and AccS and AccT are

respectively the accuracy on source and target test data. For
SFDA, we use all source data for model pretraining. And for
G-SFDA we only use part (80% for Office-Home and 90%
for VisDA), the remaining source data is used for evaluating
source performance. We provide results under both the do-
main aware and domain agnostic setting (where we estimate



Method (Synthesis→ Real) Source-free plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class
ResNet-101 [9] × 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
ADR [30] × 94.2 48.5 84.0 72.9 90.1 74.2 92.6 72.5 80.8 61.8 82.2 28.8 73.5
CDAN [22] × 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
CDAN+BSP [5] × 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
SWD [17] × 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
MDD [49] × - - - - - - - - - - - - 74.6
IA [11] × - - - - - - - - - - - - 75.8
DMRL [42] × - - - - - - - - - - - - 75.5
MCC [12] × 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
DANCE [29] × - - - - - - - - - - - - 70.4
DANCE [29]

√
- - - - - - - - - - - - 70.2

SHOT [20]
√

94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
3C-GAN [18]

√
94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6

Ours w/ domainID
√

96.1 88.3 85.5 74.1 97.1 95.4 89.5 79.4 95.4 92.9 89.1 42.6 85.4

Table 1: Accuracies (%) on VisDA-C for ResNet101-based unsupervised domain adaptation methods. Source-free means
setting without access to source data during adaptation. Underlined results are second highest result. Our results are using
target attention At.

Method Source-free Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg
ResNet-50 [9] × 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
MCD [31] × 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1
CDAN [22] × 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
MDD [49] × 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
IA [11] × 56.0 77.9 79.2 64.4 73.1 74.4 64.2 54.2 79.9 71.2 58.1 83.1 69.5
BNM [6] × 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9
BDG [45] × 51.5 73.4 78.7 65.3 71.5 73.7 65.1 49.7 81.1 74.6 55.1 84.8 68.7
SRDC [38] × 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
SHOT [20]

√
57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8

Ours w/ domainID
√

57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3

Table 2: Accuracies (%) on Office-Home for ResNet50-based unsupervised domain adaptation methods. Source-free means
source-free setting without access to source data during adaptation. Underline means the second highest result. Our results are
using target attention At.

plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.
Source-free S/T S/T S/T S/T S/T S/T S /T S /T S /T S /T S /T S /T S /T H

Source model 99.9/70.6 99.9/15.6 99.3/45.6 99.1/80.9 99.9/63.0 99.9/5.1 99.4/79.2 100/24.9 99.9/64.0 100/39.6 99.3/84.8 98.3/6.3 99.6 /48.1 64.9
SHOT [20]

√
99.3/94.4 97.3/85.8 34.9/78.4 47.3/55.2 94.4/93.9 93.2/95.0 38.3/81.5 94.4/79.5 99.1/89.8 92.7/90.1 55.4/85.6 62.0/56.8 75.7/82.2 78.8

Ours w/ domain-ID
√

99.7/95.9 98.7/88.1 98.4/85.4 80.0/72.5 94.6/96.1 98.4/93.7 76.2/88.5 97.8/80.6 98.8/92.3 99.9/92.2 75.6/87.6 67.3/44.8 90.4/85.0 87.6
Ours w/o domain-ID

√
99.7/95.4 98.7/87.7 98.4/85.7 80.0/71.5 94.6/96.1 98.4/94.8 76.2/89.2 97.8/80.4 98.8/92.0 99.9/88.6 75.6/87.4 67.3/44.1 90.4/84.4 87.3

Table 3: Accuracy (%) of each method on VisDA dataset using ResNet-101 as backbone under G-SFDA setting. Randomly
specifying 0.9/0.1 train/test split for the source dataset. T and S denote accuracy on target and source domain. Domain-ID
means having access to domain-ID during evaluation, we provide results under both domain aware and agnostic setting.

Ar→ Cl Ar→ Pr Ar→ Rw Cl→ Ar Cl→ Pr Cl→ Rw
Source-free S T H S T H S T H S T H S T H S T H

Source model 78.2 45.0 57.1 78.2 67.2 72.3 78.2 73.9 76.0 79.7 49.0 60.7 79.7 59.7 68.3 79.7 62.2 69.9
SHOT [20]

√
60.9 55.3 58.0 65.2 77.4 70.8 71.6 80.8 75.9 65.9 68.4 67.1 63.5 76.9 69.6 67.4 75.7 71.3

Ours w/ domain-ID
√

70.0 54.9 61.5 74.0 77.1 75.5 74.5 79.7 77.0 78.5 67.0 72.7 80.3 76.1 78.1 80.6 78.4 79.5
Ours w/o domain-ID

√
68.8 54.7 60.9 72.0 75.6 73.8 74.5 78.5 76.4 77.2 66.6 71.5 79.7 74.0 76.7 78.5 78.4 78.4

Pr→ Ar Pr→ Cl Pr→ Rw Rw→ Ar Rw→ Cl Rw→ Pr Avg.
S T H S T H S T H S T H S T H S T H S T H

Source model 92.3 52.0 66.5 92.3 40.3 56.1 92.3 73.0 81.5 85.4 64.7 73.6 85.4 45.8 59.6 85.4 77.5 81.3 83.9 59.2 68.6
SHOT [20] 78.9 65.4 71.5 74.2 54.2 62.6 84.9 80.5 82.6 79.7 71.7 75.5 71.0 59.0 64.4 79.2 84.6 81.8 71.9 70.8 70.9

Ours w/ domain-ID 89.8 65.7 75.9 89.3 53.8 67.1 91.6 81.9 86.5 85.9 71.5 78.0 81.3 60.5 69.4 84.4 83.4 83.9 81.8 70.8 75.5
Ours w/o domain-ID 87.8 65.1 74.8 86.3 53.2 65.8 90.3 81.6 85.7 83.2 72.0 77.2 78.3 60.2 68.1 83.4 82.8 83.1 80.0 70.2 74.4

Table 4: Accuracy (%) of each method on Office-Home dataset using ResNet-50 as backbone under G-SFDA setting.
Randomly specifying 0.8/0.2 train/test split for the source dataset. T and S denote accuracy on target and source domain.
domain-ID means having access to domain-ID during evaluation, w/o domain-ID means using the estimated domain-ID from
domain classifier.



Office-Home S T
Source model 83.9 59.2

Ours (w/o SDA) 72.4 70.2
Ours (w/ SDA) 81.8 70.8

VisDA S T
Source model 99.6 48.1

Ours (w/o SDA) 72.1 74.6
Ours (w/ SDA) 90.4 85.0

OH /s S T
65 (paper) 80.0 70.2

130 80.6 70.3
195 80.8 70.4

VisDA /s S T
16 89.0 83.6
32 90.2 84.2

64 (paper) 90.4 84.4

Table 5: (Left two) Ablation study on Office-Home and VisDA. The S and T means source and target accuracy. (Right two)
Ablation on number of stored images per domain to train domain classifier.

test
Ar Cl Pr Rw

Ar 74.5 42.0 61.3 68.2
Cl 71.4 56.6 61.2 67.9
Pr 70.9 55.7 73.0 71.2
Rw 72.6 55.6 72.7 77.2

test
Cl Ar Pr Rw

Cl 82.2 49.7 60.0 61.2
Ar 80.1 65.4 63.7 66.3
Pr 79.7 63.2 72.9 68.2

Rw 78.6 64.9 72.8 72.4

test
Pr Ar Cl Rw

Pr 92.0 49.7 41.0 71.0
Ar 91.0 63.6 42.7 72.6
Cl 89.2 61.8 53.1 70.4
Rw 88.6 63.1 51.5 76.5

test
Rw Ar Cl Pr

Rw 86.0 63.0 45.7 77.6
Ar 85.7 72.4 49.8 77.4
Cl 80.7 68.9 59.1 73.4
Pr 84.2 69.1 57.4 80.5

Table 6: Continual Source-free Domain Adaptation, the model is adapted from source domain (the first domain) to all target
domain sequentially. The results on source domain are reported on the test set.

the domain-ID with the domain classifier). Finally, we report
results for continual source-free domain adaptation.
Model details. We adopt the backbone of ResNet-50 [9]
for Office-Home and ResNet-101 for VisDA along with an
extra fully connected (fc) layer as feature extractor, and a
fc layer as classifier head. We adopt SGD with momentum
0.9 and batch size of 64 on all datasets. The learning rate
for Office-Home is set to 1e-3 for all layers, except for
the last two newly added fc layers, where we apply 1e-2.
Learning rates are set 10 times smaller for VisDA. On the
source domain, we train the whole network with all domain
attentions from SDA, while for target adaptation, we only
train the BN layers and last layer in feature extractor, as
well as the classifier. We train 30 epochs on the target
domain for Office-Home while 15 epochs for VisDA. For
the number of nearest neighbors (K) in Eq. 1, we use 2 for
Office-Home, since VisDA is much larger we set K to 10.
All results are the average between three runs with random
seeds. For training the domain classifier, we store one image
per class for Office-Home (total 130 images for 65 classes,
2 domains), and randomly sample 64 images per domain for
VisDA (total 128 images for 12 classes, 2 domains). The
domain classifier only contains 2 fc layers.

4.1. Comparing with State-of-the-art

Target-oriented Domain Adaptation. We first evaluate
the target performance of our method compared with ex-
isting DA and SFDA methods. The results on the VisDA
and Office-Home dataset are shown in Tab. 1-2, our results
are using target attention At. In these tables, the top part
(denoted by × in the source-free column) shows results
for the normal setting with access to source data during
adaptation. The bottom one (denoted by

√
in the source-

free column) shows results for the source-free setting. Our
method achieves state-of-the-art performance on VisDA sur-
passing SHOT by a large margin (2.5%). The reported results
clearly demonstrate the efficiency of the proposed method
for source-free domain adaptation. Interestingly, like al-
ready observed in the SHOT paper, source-free methods

outperform methods that have access to source data during
adaptation. Our method is on par with existing DA methods
on Office-Home, where our method gets the same results
as the DA method SRDC [38] and is a little inferior to the
SFDA method SHOT (0.5% lower than SHOT).In addition,
we show the results of DANCE [29] with and without source
data in Tab. 1 which are almost the same. Since both of
DANCE and our method are using neighborhood informa-
tion for adaptation, these results may imply that source data
are not necessity when efficiently exploiting the target fea-
ture structure.

Generalized Source-free Domain Adaptation. Here we
evaluate our method under the G-SFDA setting. Since we
leave out part of the source data for evaluation, we need to
reproduce current SFDA methods. 3C-GAN [18] did not
release code, we therefore only compare with the source-free
method SHOT [20] reproduced by ourselves based on the
author’s code. As shown in Tab. 3-4, first our method (w/
domain-ID) obtains a significantly higher H value improv-
ing SHOT by 8.8% on Office-Home and 4.6% on VisDA.
The gain is mainly due to superior results on the source
dataset, since SHOT suffers from forgetting. Compared with
the source model, our method still has a drop of 2.1% and
9.2% lower on Office-Home and VisDA, implying there is
still space to explore further techniques to reduce forgetting.
We also report the results for domain agnostic evaluation,
where we use the domain classifier to estimate domain-ID.
As shown in the last row of Tab. 3 and Tab. 4, with the
estimated domain-ID, our methods can get similar results
compared with the domain aware method, and still report su-
perior H values compared to SHOT.Note there is still source
performance degradation, since we only deploy one SDA
module before the classifier. The forgetting is caused in the
layers inside the feature extractor. One factor is the statistics
in the BN layers which will be replaced by the target statis-
tics after adaptation. If we would adapt the BN parameters
back to the source domain (by simply doing a forward pass
to update BN statistics before evaluation), we found that this
leads to a performance gain (0.7% and 1.6% on Office-Home



and VisDA respectively) on the source domain.

4.2. Analysis and further experiments

Training curves. As shown in Fig. 3(a), with SDA the
source performance during the whole adaptation stage is
quite smooth, which proves the efficiency of SDA.

Number of nearest neighbors K. In Fig. 3(b), we show
the results with different K ∈ {1, 5, 10, 15, 20, 30} in Eq. 1
on VisDA. Our method is quite robust to the choice of K,
only K is 1 results in lower results. We conjecture that only
using a single nearest neighbor in Eq.1 maybe noisy if the
feature locates in dense regions.

Ablation study of SDA. We show the results of removing
the SDA in the left of Tab. 5. As expected removing SDA
leads to a large drop in source performance. Unexpected is
that removing SDA also deteriorates target performance: a
lot on VisDA (10.4↓), and a little for Office-Home (0.6↓).
To further investigate it, we check how well LSC works with
and without SDA on VisDA in Fig. 4; here Accn means the
percentage of target features which share the same predicted
label with its 3 nearest neighbors, and among those features
Accnp means the percentage having the correct shared pre-
dicted label. According to the results, LSC can lead to good
local structure (most neighbors share the same prediction),
however the prediction maybe wrong if removing SDA, this
is especially the case for class 5 and 11 which have totally
wrong prediction (Accnp is 0). This may imply keeping
source information with SDA is helping target adaptation.

Domain classifier. We report results as a function of the
number of stored images for training domain classifier (right
of Tab. 5). For Office-Home, we ensure at least one image
per class. The results show with a small amount of stored
images, the learned domain-ID classifier works well.

t-SNE visualization. We visualize the features before and
after adaptation, which are already masked by the different
domain attentions, the source and target features are expected
to cluster independently, just as shown in Fig. 5. The source
clusters maintain well after adaptation, and the disordered
target features turn into more structured after adaptation. We
also visualize features in the shared and specific domain
channels. As shown in Fig. 6, features in the shared domain
channels cluster together, but features in the specific domain
channels are totally separated across domains.

Continual Source-free Domain Adaptation. We also
provide results (domain aware) of continual source-free do-
main adaptation in Tab. 6. The results show that it can work
well for all domains. The interesting thing is that adapting to
one target domain will improve the performance on not-seen
target domain, for example, when adapting the model from

Before Adaptation After Adaptation

Figure 5: t-SNE visualization of features before and after
adaptation on task Ar→Pr of Office-Home. The blue are
source features while the red are target.

Domain Shared Domain Specific

Figure 6: t-SNE of features from domain shared and domain
specific channels after adaptation (task Ar→Pr on Office-
Home). The blue are source features while red for target.
source domain Cl to the first target domain Ar, the unseen
target domain Rw also gains. The reason is that the informa-
tion learned currently is also helpful for future target domain.
Note for some target domains, the result is lower compared
with directly adapting from source to the domain, the reason
is that we decrease the learned channels by using more gra-
dient regularization as in Eq. 6, implying more capacity is
needed for adapting to more domains.

5. Conclusion

In this paper, we propose a new domain adaptation
paradigm denoted as Generalized Source-free Domain Adap-
tation, where the learned model needs to have good perfor-
mance on both the target and source domains, with only
access to the unlabeled target domain during adaptation. We
propose local structure clustering to keep local target clus-
ter information in feature space, successfully adapting the
model to the target domain without source domain data. We
propose sparse domain attention, which activates different
feature channels for different domains, and is also utilized
to regularize the gradient during target training to maintain
source domain information. Experiment results testify the
efficacy of our method.
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