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Abstract—Modern computer vision requires processing large
amounts of data, both while training the model and/or during
inference, once the model is deployed. Scenarios where images
are captured and processed in physically separated locations are
increasingly common (e.g. autonomous vehicles, cloud computing,
smartphones). In addition, many devices suffer from limited
resources to store or transmit data (e.g. storage space, channel
capacity). In these scenarios, lossy image compression plays
a crucial role to effectively increase the number of images
collected under such constraints. However, lossy compression
entails some undesired degradation of the data that may harm
the performance of the downstream analysis task at hand, since
important semantic information may be lost in the process.
Moreover, we may only have compressed images at training
time but are able to use original images at inference time
(i.e. test), or vice versa, and in such a case, the downstream
model suffers from covariate shift. In this paper, we analyze this
phenomenon, with a special focus on vision-based perception
for autonomous driving as a paradigmatic scenario. We see
that loss of semantic information and covariate shift do indeed
exist, resulting in a drop in performance that depends on the
compression rate. In order to address the problem, we propose
dataset restoration, based on image restoration with generative
adversarial networks (GANs). Our method is agnostic to both
the particular image compression method and the downstream
task; and has the advantage of not adding additional cost to the
deployed models, which is particularly important in resource-
limited devices. The presented experiments focus on semantic
segmentation as a challenging use case, cover a broad range
of compression rates and diverse datasets, and show how our
method is able to significantly alleviate the negative effects of
compression on the downstream visual task.

Index Terms—Image compression, image restoration, gener-
ative adversarial networks, deep learning, autonomous driving.

I. INTRODUCTION

MODERN intelligent devices such as smartphones, au-
tonomous vehicles and robots are equipped with high-

quality cameras and powerful deep neural networks that enable
advanced on-board visual analysis and understanding. These
large models are trained with a large amount of data and
require powerful hardware resources (e.g. GPUs). These mod-
els also require days or even weeks to train, which is not
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the Computer Science Dept. at Universitat Autònoma de Barcelona.

possible in resource-limited devices. Thus, training is often
performed in a centralized server, which also allows using
data captured by multiple devices to train better models (e.g.
a fleet of autonomous cars). In this case, training and testing
take place in two physically separated locations, i.e. server
and device, respectively. In other cases, such as in mobile
cloud computing, the data is captured by the device, while the
inference takes place in a server.

One important requirement in these scenarios is that, at
some point, the visual data needs to be transmitted from the
device to the server. Fig. 1a shows an archetypal scenario of
autonomous driving, where each vehicle of the fleet captures
and encodes data and transmits it to the server. The server
decodes the data and uses it for training the analysis models.
The trained models are then deployed to autonomous vehicles,
where they perform inference. Captured data often requires to
be annotated by humans in order to train supervised models,
which adds to the reasons to process the data in a server.

The captured data can be stored on-board in a storage
device and physically delivered to the server, or directly
transmitted through a communication channel. In either case,
storage space or channel capacity are constraints that condition
the amount of collected samples in practice, and effective
collection requires data compression to exploit the limited
storage and communication resources efficiently.

The amount of data captured (possibly from multiple cam-
eras) can be enormous, requiring high compression rates with
lossy compression. However, this entails a certain degradation
in the images, which depends on the bitstream rate (the lower
the rate, the higher the degradation). In this paper, we study
the impact of such degradation on the performance of the
downstream analysis task. At times, the degradation affects
only one of the training and test data. For instance, in Fig 1a,
training data is degraded while test data (on-board) can be
accessed without degradation.

When training data is compressed and test is not (or vice
versa), a first effect we observe is covariate shift (i.e. the
training and test data are sampled from different distributions).
For instance, the first column of Fig. 1b represents the original
captured images, while the second represents the compressed
images (i.e. reconstructed1). A clear difference in terms of
lack of details and blurred textures is observed, which causes
covariate shift (e.g. original for test, compressed for training
in the example of Fig 1a). A possible solution to this problem
is compressing both training and test data at the same rate. For

1When referring to data used in the downstream tasks, compressed images
will implicitly refer to the reconstructed images after the compression decoder.
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Fig. 1. Problem statement and proposed approach: (a) data collection using lossy compression makes training (top) and test data (bottom) different, (b)
differences between test and training data are alleviated using adversarial restoration, and (c) drop in segmentation performance due to lossy compressed
training data (CO/CC) and benefit from the proposed restoration method (RO).

the autonomous driving scenario of Fig. 1a, this would mean
deploying an image compressor in the car (including encoder
and decoder) and performing inference on the reconstructed
images. While this approach alleviates the covariate shift, it is
not always effective and also increases the computational cost
in the on-board system.

The degradation caused by lossy compression not only in-
duces covariate shift, but can also harm the performance of the
downstream task through the means of semantic information
loss. Here, semantic information refers to the information that
is relevant to solve a particular downstream task and it can be
lost during the process of compression. Semantic information
is task-dependent and its loss is typically irreversible. For
example, the actual plate number WAF BA 747 in the second
column of Fig. 1b is lost in the process of compression, and
cannot be recovered. However, if the task is car detection,
the actual plate number is not necessarily relevant semantic
information.

In this paper, we study the effect of compression on down-
stream analysis tasks (focusing on semantic segmentation)
under different configurations, which in turn can be related
to real scenarios. We observe that both covariate shift and
semantic information loss indeed result in a performance drop
(see Fig. 1c2) compared to training and test with original
images (configuration OO). The performance depends on the
compression rate and the particular training/test configuration.
For instance, in the configuration of the autonomous driving
scenario of Fig. 1a compressing the test data prior to inference
(we refer to this approach as compression before inference,
and corresponds to the training/test configuration compressed-
compressed, or CC for short) degrades the performance more
than using the original data (configuration CO), showing
that it is preferable to keep the test data more semantically
informative than correcting the covariate shift.

The previous result also motivates us to explore whether
there exists a solution that improves over the baseline CO and

2Segmentation performance is measured as the mean Intersection over
Union (mIoU), which is the ratio between the correctly predicted pixels and
union of predicted and ground truth pixels, averaged across every category.

CC configurations. As a result, we propose dataset restoration,
an effective approach based on image restoration using gener-
ative adversarial networks (GANs) [1]. Dataset restoration is
applied to the images in the training set without modifying the
test images, effectively alleviating the covariate shift, while
keeping the test data semantically informative. In this case,
we show that the configuration restored-original (RO) does
improve performance over the baselines (see Fig. 1c). An
additional advantage is that there is no computational cost
penalty nor additional hardware or software requirements in
the deployed on-board system (in contrast to compressing the
test data). Note also that our approach is generic and inde-
pendent of the particular compression (deep or conventional)
used to compress the images.

Adversarial restoration decreases the covariate shift by
hallucinating texture patterns that resemble those lost during
compression while removing compression artifacts, both of
which contribute to the covariate shift. The distribution of
restored images is closer to the distribution of original images
and thus the covariate shift is lower. Fig. 1b shows an example
where the trees have lost their texture and appear essentially as
blurred green areas. A segmentator trained with these images
will expect trees to have this appearance, but during test
they appear with the original texture and details of leaves
and branches, which leads to poor performance. The restored
image has textures that resemble real trees and contains less
compression artifacts, which makes its distribution closer to
that of the actual test images, contributing to a significant
improvement in downstream performance (see Fig 1c). Note
that adversarial restoration cannot recover certain semantic in-
formation. This example also illustrates the effect on semantic
information. The license plate appears completely blurred due
to compression. Note that adversarial restoration can recover
the texture of digits (or even hallucinate random digits), which
can be useful to improve car segmentation, but the original
plate number is lost (i.e. semantic information), which makes
it impossible to perform license plate recognition at that
compression rate.

In summary, our contributions are as follows:
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• Systematic analysis of training/test configurations with
compression and relation of downstream performance
with rate, semantic information loss and covariate shift.

• Dataset restoration, a principled method based on our the-
oretical analysis, to improve downstream performance in
on-board analysis scenarios. This method is task-agnostic
and can be used alongside multiple image compression
methods. It also does not increase the inference time and
memory requirements of the downstream model.

II. RELATED WORK

A. Lossy compression
A fundamental problem in digital communication is the

transmission of data as binary streams (bitstreams) under
limited capacity channels [2], [3], a problem addressed by
data compression. Often, practical compression ratios are
achievable only with lossy compression, i.e. a certain loss
with respect to the original data is tolerated. Traditional lossy
compression algorithms for images typically use a DCT or a
wavelet transform to transform the image into a compact rep-
resentation, which is simplified further to achieve the desired
bitrate. Examples of lossy image compression algorithms are
JPEG [4], JPEG 2000 [5], [6], and BPG [7]. BPG is the current
state-of-the-art and is based on tools from the HEVC video
coding standard [8].

Recently, deep image compression [9]–[13] has emerged
as a powerful alternative to the traditional algorithms. These
methods also use a transformation based approach like the tra-
ditional methods, but use deep neural networks to parameterize
the transformation [9]. The parameters of the networks are
learned by optimizing for a particular rate-distortion tradeoff
on a chosen dataset. Mean Scale Hyperprior (MSH) [13], a
deep image compression method based on variational autoen-
coders and BPG are used as representative methods of deep
learning based and traditional image compression respectively.

B. Visual degradation and deep learning
A loss in the quality of images can occur through many

factors including blur, noise, downsampling and compres-
sion. Researchers have reported a drop in task performance
of convolutional neural networks (CNN) models when such
degradations are present in the test images [14]–[16]. Fur-
ther, numerous methods have been proposed to make these
CNN models robust to degradations [15], [17], [18]. These
approaches include forcing adversarial robustness during train-
ing [15], modifying and retraining the network [17], and using
an additional network altogether [18].

While the aforementioned works target robustness across
degradations, there have been studies focusing exclusively on
compression as well. These include [19] (on the deep com-
pression method [12]), [20] (JPEG) and [21] (both deep [22]
and JPEG). Unlike the previous methods, these works use
the compressed images (in some form) for training the deep
models and thus obtain a better performance on compressed
images. Moreover, [19] and [20] encode the images using the
compressors and the deep networks are trained to predict the
task output using the encoded representation directly, resulting
in faster inference.

C. Image restoration

Image restoration involves the process of improving the
quality of degraded images. Restoration methods can be
grouped into denoising [23], deblurring [24], [25], super-
resolution [26], compression artifact removal [27], etc. de-
pending on the kind of degradation, although they share
many similarities. Lately, deep learning methods have been
successful for image restoration tasks. Some of these methods
can be applied to any degradation [28], [29] while others
are specific to the degradation (deblurring [30], [31], super-
resolution [32], [33], denoising [34], [35] and compression
artifact removal [36]). More recently, image restoration algo-
rithms based on generative adversarial networks (GANs) have
become popular thanks to their improved performance (super-
resolution [37], [38], compression artifact removal [39], [40]
and deblurring [41]).

A compressed image can be processed using a restoration
method before using it for inference to improve its perfor-
mance; although our analysis reveals that this is a sub-optimal
approach. Galteri et al. [39] propose a GAN-based restoration
network to correct JPEG compression artifacts. They also
evaluate different restoration algorithms on the basis of the
performance of restored images on a trained object detection
network. They show that their GAN-based algorithm performs
better than other methods compared in the paper. Our analysis
provides an explanation for this observation.

D. Domain adaptation.

Domain adaptation [42] is a problem motivated by the
lack of sufficient annotations. Typically, domain adaptation
methods leverage the abundant annotated data available from
a different yet related domain (called as the source domain)
to improve performance on the domain of interest (target
domain), where there is a lack of annotated data. Examples of
source and target domains include synthetic images vs real im-
ages, images in the wild vs images on a webpage, etc. Domain
adaptation methods can be divided into unsupervised [43],
[44], semi-supervised [45] and supervised [46]–[50] categories
depending on the quantity of available data (and annotations)
in the target domain. Approaches for domain adaptation can
be categorized into latent feature alignment using autoen-
coders [46], [47], adversarial latent feature alignment [48]–
[51] and pixel-level adversarial alignment [44], [50].

The scenario when only compressed images are available
at training time, with original images available at test time is
related to domain adaptation. Dataset restoration, our proposed
method for this scenario, corrects the covariate shift and
domain adaptation algorithms account for domain shift in
some form. Probably, the closest domain adaptation method to
dataset restoration is an unsupervised method that addresses
alignment only at pixel-level [44]. However, an important
distinction is that domain adaptation tackles the problems
arising due to lack of annotations for the images in the target
domain, while for us the concern lies in the non-availability of
images themselves. Thus, we study the effectiveness of dataset
restoration using an external dataset for training and also by
varying the number of original training images.
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III. LEARNING AND INFERENCE WITH COMPRESSED
IMAGES

A. Problem definition

We are concerned with downstream understanding tasks
where we want to infer from an input image x ∼ pX (x)
the corresponding semantic information y ∼ pY |X (y). In
the rest of the paper, we will assume that y is a semantic
segmentation map, but our approach can be applied to other
semantic inference tasks, such as image classification or object
detection. The objective is to find a parametric mapping
φ : x 7→ y by supervised learning from a training dataset
Xtr =

{(
x
(1)
tr ,y

(1)
tr

)
, . . . ,

(
x
(N)
tr ,y

(N)
tr

)}
, where each image

x(i) has a corresponding ground truth annotation y(i). The
mapping is typically implemented as a deep neural network.
The performance of the resulting model is evaluated on a
test set Xts =

{(
x
(1)
ts ,y

(1)
ts

)
, . . . ,

(
x
(M)
ts ,y

(M)
ts

)}
. Under

conventional machine learning assumptions, Xtr ∼ pX (x)
and Xts ∼ pX (x), i.e. both training and test sets are sampled
from the same underlying distribution pX .

In our setting, we consider that Xtr and/or Xts undergo a
certain degradation ψ : x 7→ x̂. In our case, the degradation
is related with the lossy compression process necessary to
transmit the image to the remote location where the actual
training or inference takes place; and so we have x̂ = ψ (x) =
g (f (x)), where, f (x) is the image encoder, g (z) is the image
decoder3 and z is the compressed bitstream. The result x̂ is
the reconstructed image, which follows a new distribution pX̂
of degraded images, i.e. x̂ ∼ pX̂ (x). Note that parallels can
be drawn from the arguments in this section for other image
degradations such as blur, downsampling, noise, color and
illumination changes, etc.

Lossy compression is characterized by the distortion
D (x, x̂) of the reconstructed image and the rate R (z) of the
compressed bitstream. The encoder and decoder are designed
to operate around a particular rate-distortion (R-D) tradeoff λ,
either by expert crafting in conventional image compression,
or by directly optimizing parameters of a deep neural network.

B. Covariate shift

The covariate shift problem precisely occurs when the
underlying distributions of training and test data differ, i.e.
Xtr ∼ pXtr

and Xts ∼ pXts
with pXtr

6= pXts
. This leads to

sub-optimal performance because the model is evaluated on a
data distribution different from the one it was optimized for.
While covariate shift is often found in machine learning (e.g.
training with synthetic data and evaluating on real), in our case,
this problem is a consequence of lossy compression and it in-
creases severely as the rate decreases. The drop in performance
is related to the degree of covariate shift, which could be seen
as the divergence between distributions d (pXtr , pXts). In the
conventional machine learning setting without compression,
there is no covariate shift, since Xtr ∼ pX and Xts ∼ pX , nor
when both training and test set are compressed with the same
method and at the same rate, since Xtr ∼ pX̂ and Xts ∼ pX̂ .

3We only consider lossy compression, since in lossless compression x̂ = x.

However, covariate shift exists in the other two configurations,
namely CO and OC (see Table I).

The degradation due to lossy compression can be observed
clearly in Fig. 1b, when comparing the original captured image
and the image after compression. This also gives an idea of
the difference between the original domain and the domain
induced by compression. It has images with lesser details
which also suffer from blurring and coding artifacts. More
examples are shown in Fig. 2 for the two compression methods
(MSH and BPG), with the images compressed at a similar
rate. It can be seen that degradations are consistent yet with
some differences (e.g. blocky artifacts for BPG, more blurred
in MSH).

C. Semantic information loss

Covariate shift explains how compression impacts the down-
stream task when data at training and test time are compressed
unequally. Another factor that impacts task performance arises
from compression resulting in semantic information loss. By
the semantic information present in an image we refer only to
what is relevant to the downstream task. Thus, by definition,
semantic information loss is task dependent. Continuing with
our example from the introduction (Fig. 1b), the letters in the
license plate of the car plays little to no role in establishing
the presence of a car in the image. Thus, the exact letters are
not relevant semantic information for the task of car detection.
However, if the task is license plate recognition, the letters are
an integral part of semantic information. Compression causes
semantic information loss as it makes the compressed image
devoid of some semantic attributes present in the original
image. The loss of letters on the plate in the compressed image
(Fig. 1b) is evidence of semantic information loss (when the
task is license plate detection).

Further evidence of semantic information loss can be found
in Fig. 2, since the degradation often removes details and
textures, blends small objects together via blur and lack of
contrast, and introduces confusing artifacts, preventing us from
recognizing small objects at all (e.g. individual pedestrians),
and making larger objects more difficult to recognize due to
the loss of discriminative details and textures (e.g. tree leaves).
Only in retrospective, after observing the original undistorted
crop, we can infer the small objects in the distorted image.
Similarly, a semantic segmentation model will struggle to
recognize them, or directly fail when the semantic information
has disappeared completely (e.g. license plate number).

Let Y be a random variable that represents the semantic
information in the original image, X . For instance, if the task
is semantic segmentation, Y would take values from the set
of semantic maps of images. Mathematically, we formulate
semantic information loss, S, in the compressed images,
X̂ , using mutual information, I , as follows: SY (X, X̂) =
I(X,Y ) − I(X̂, Y ). Predictably, SY (X, X̂) is non-negative,
since X̂ is produced from X via the map ψ and thus, we have
I(X,Y ) ≥ I(X̂, Y ) as a consequence of the data processing
inequality.
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Fig. 2. Effects of compression and restoration (from left to right): captured image, compressed (BPG), restored (BPG), compressed (MSH), restored (MSH).
The brightness of the image crops have been slightly enhanced to improve visibility.

TABLE I
TRAINING/TEST CONFIGURATIONS

Config. Distribution Inf. loss Cov.
shift

Examples
Train Test Train Test

OO pX pX No No No Most machine learning

CO pX̂ pX Yes No Large On-board analysis
(autonomous cars, drones)

OC pX pX̂ No Yes Large Cloud computing,
distributed automotive perception

CC pX̂ pX̂ Yes Yes No Compression before
training/inference

OR pX pX̄ Yes No Medium Image restoration
RO pX̄ pX No Yes Medium Dataset restoration

D. Training/test configurations, application scenarios and re-
lated work

Now, we focus on several combination of training/test
configurations and provide examples of real world scenarios
(summarized in Table I). A configuration is defined by the pair
(Xtr, Xts), with Xi ∼ pX represented as O and Xi ∼ pX̂
represented as C. Thus, the conventional machine learning
setting (i.e. without compression) corresponds to OO, and the
configuration of Fig. 1a is CO, since Xtr ∼ pX̂ and Xts ∼ pX .
The former does not suffer from semantic information loss
nor covariate shift, while the latter does suffer from both. The
CO configuration can also be generalized to other scenarios
involving on-board analysis4 where data capture and inference
takes place in the device and the training in a server (e.g.
autonomous cars, unmanned aerial vehicles and other robotic
devices).

The configuration OC involves training performed in the
server with the original images, while the device is resource-
limited (e.g. a smartphone) but can send the image to the
server, and the result of the analysis (e.g. predicted class,
bounding box, segmentation map) is used in the server side
or sent back to the device. In this case, the test images are
compressed, which implies semantic information loss, and

4Often called on-board perception, but we prefer on-board analysis to avoid
confusion later.
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Fig. 3. Example of OC configuration: mobile cloud computing with inference
on compressed test images, and high quality training images.

also covariate shift. Fig. 3 illustrates the paradigmatic scenario
of (mobile) cloud computing [52]–[54]. Another example of
OC configuration is distributed automotive perception [21],
where the sensor module compresses the captured image
and transmits it through the automotive bus system to the
perception module where the downstream tasks are performed.

The configuration CC appears in the previous scenario when
training images are also compressed, and at the same rate as
test images. In this case, both training and test images suffer
from semantic information loss, but there is no covariate shift
since both are sampled from the same pX̂ .

Compression before training. We can remove the covariate
shift from the configuration OC by transforming it into CC.
This can be achieved by compressing the training data at
the same rate and we refer to this adaptation approach as
compression before training (see Fig. 4a). Naturally, since CC
is unaffected by covariate shift unlike OC, we expect the model
with configuration CC to outperform configuration OC.

As a downside of the process of compression before train-
ing, semantic information loss is additionally introduced into
the training set. However, the presence or absence of semantic
information loss in the test images is a major factor, while it
is not the case with the training images. The segmentation
network is trained using the entire set and if some class
information is lost in a particular training image, its presence
in other training images can compensate for it. Thus, we can
usually get away with introducing some semantic information
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loss in the training set. In contrast, as the segmentation
network is evaluated on individual images in the test set,
the performance suffers critically by the presence of semantic
information loss.

Compression before inference. Similarly, we can also
transform configuration CO into CC by compressing the
test images. We refer to this process as compression before
inference (see Fig. 4b). While this process allows us to correct
the covariate shift due to compression, it also introduces
semantic information loss at test time. The introduction of
semantic information loss in the test is critical and can
cause the performance of configuration CC to be even worse
than the configuration CO at times (as shown in Fig. 1c).
Moreover, compression before inference requires installing a
full compression encoder and decoder module on-board prior
to the downstream task, resulting in a significant computational
penalty in the deployed system.

IV. DATASET RESTORATION

A. Proposed approach

Motivated by the two limitations mentioned above, we
propose dataset restoration as an alternative approach that
alleviates covariate shift without inducing semantic informa-
tion loss in the test data (in contrast to compression before
inference). The key idea is to adapt the training dataset using
adversarial image restoration, and use the adapted dataset as
actual training data for the downstream task (see Fig. 4c).
In this way, the on-board analysis module can exploit all the
information available in the captured image. Another important
advantage is that adaptation takes place only in the server, and
the resulting model can be readily and seamlessly deployed in
the car with the same hardware, therefore without requiring
to install any additional hardware nor increasing the inference
cost.

We now recall that a great deal of degradation is related to
the loss of texture in the decoded image and the appearance of
compression artifacts (these two factors are clearly apparent
in Figs. 1b and 2). Our goal was to find an appropriate image
restoration technique that could learn from a given set of
examples and provide us a way to remove the artifacts and
recover texture in the images.

Our restoration module is based on adversarial image
restoration, where a generative adversarial network (GAN) [1]
conditioned on the degraded image is employed to improve the
image quality. A GAN is based on two networks competing
in an adversarial setting. The generator takes the input image
and outputs the restored image. The discriminator observes
real and restored images and it is optimized to classify
between real and restored images. The generator, in contrast
is optimized to fool the discriminator, and indirectly improves
the quality of the restored images. Through the process, the
generator learns to remove compression artifacts and replace
unrealistic textures by realistic ones that could be used by the
discriminator to identify the restored images. The architecture
of GAN is based on the one proposed in [55] (for image-to-
image translation [56]), which has a generator and multiple
discriminators (see Appendix B for details).

Encoder Decoder

Server

Dataset

Analysis
moduleAdapted

dataset

Adapted
dataset

(a)

Encoder Decoder Analysis
module

Car

(b)

Dataset
(restoration)

Restoration
model

Dataset
(analysis)

Restoraton
model

Analysis
moduleRestored

dataset

Server

(c)

Fig. 4. Adaptation strategies: (a) compression before training, (b) compression
before inference, and (c) dataset restoration.

During the process of dataset restoration, we use our trained
generator to restore individually every image in the training
dataset for the downstream task. Examples of some of the
restored images can be found in Figs. 1b and 2. While
not being able to restore lost semantic information (e.g. the
same individual pedestrians), the restored images look sharper,
with less artifacts and blurred regions are enhanced with
hallucinated textures that resemble the real images. As such,
the shift with respect to the distribution of original images, on
which the trained model will be evaluated, is reduced. Table I
includes two new configurations OR and RO, where R refers
to restored images.

B. Adversarial restoration, covariate shift and perceptual in-
dex

Perceptual image quality is often assessed using subjective
evaluations where human subjects are presented with pairs of
images where one of them is degraded (generated through
some artificial processing, such as compression or restoration)
and the other is a real, not degraded image. The perceptual
quality is (inversely) proportional to the probability of cor-
rectly selecting the real image. Blau and Michaeli [57] show
that this probability, and therefore the perceptual quality, can
be related to the divergence d(pX , pZ) (in principle it could
be any probabilistic divergence) between the distribution of
real images pX and the distribution of generated images pZ .
This probabilistic divergence is termed as perceptual index.
The lower the value of the perceptual index, the higher is the
quality of the image.

In practice, collecting human opinions is expensive and
often infeasible. Hence, [57] proposes other practical methods
to estimate the perceptual index. Specifically, since the task
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of a discriminator neural network is precisely to distinguish
between real and artificial images, it’s success rate could be
used as perceptual index. With this point of view, training
a GAN can be seen as decreasing the perceptual index of
generated images by decreasing the perceptual index measured
by the discriminator. However, a discriminator needs to be
trained for every experiment, and also requires many images.
As a more practical solution, [57] also suggests that Blind
Image Quality Assessment methods can be a suitable proxy for
the perceptual index, since these methods are trained to predict
the actual human opinion scores in image quality assessment
tests.

With the interpretation of perceptual index as a divergence
with respect the distribution of real images, we observe an
interesting relation between perceptual index and covariate
shift, which explains why adversarial image restoration is the
appropriate approach (compared to non-adversarial). In the
CO configuration, the training images Xtr are compressed
and therefore follow pX̂ , while the test images Xts follow
pX . Thus, the covariate shift is equal to d(pX , pX̂), where
d denotes a probabilistic divergence. Note that this quantity
is essentially the perceptual index of compressed images.
Therefore, in the case of CO configuration, the covariate shift
corresponds to the perceptual index of the test set (in both
cases, the lower the better). An important conclusion from [57]
is that perception and distortion are at odds with each other,
and that there exists a limit beyond which perception and
distortion cannot be reduced simultaneously (see Fig. 5). Thus,
the effect of dataset restoration (i.e. moving from CO to RO)
is to lower the covariate shift (and perceptual index) at the
expense of increasing distortion, provided we are close to the
perception-distortion limit.

We are ultimately interested in the implications on the
performance of the downstream task, semantic segmentation
in particular. Our analysis in the previous section reveals
that the task performance is greatly dependent on covariate
shift and semantic information loss. Reducing the perceptual
index is therefore more crucial than training with images of

low distortion, as a lower perceptual index corresponds to a
lower covariate shift. Hence, we use adversarial restoration
and decrease the perceptual index at the cost of increased
distortion.

Are all image restoration approaches helpful? We argue
that only adversarial image restoration are suitable, since
they explicitly minimize the perceptual index through the
discriminator and consequently the covariate shift with respect
to the captured images. In contrast, non-adversarial image
restoration methods do not necessarily reduce the perceptual
index. Typically, these methods try to further decrease the
distortion and this can be counter-productive as perception and
distortion are at odds near the limit.

C. Training data for dataset restoration

Training the GAN for dataset restoration requires original
images as the discriminator is tasked to distinguish between
the image output from the generator and original images. We
consider two cases depending on the data available:

a. Privileged dataset. We assume the availability of some
amount of original images from the same distribution
(i.e. pX ) that can be used to train the restoration net-
work (e.g. collected with lossless compression). These
privileged images are generally much more expensive
to collect than the usual (lossily) compressed images.
Note that for configurations RO and OR, the restoration
network is trained using privileged data.

b. Auxiliary dataset. We use an external dataset Z with
uncompressed images, preferably from a similar domain.
This option has typically zero cost, since we can leverage
publicly available image restoration datasets, or even
directly use a publicly available adversarial restoration
model. We denote as AO the configuration RO when the
restoration network is trained using an auxiliary dataset.

The images in Z follow a distribution pZ 6= pX . Thus,
training the restoration network with the auxiliary dataset
has the drawback of suffering from certain domain shift,
which does not occur in the privileged dataset. However, the
degradations and artifacts that a restoration network restores
tend to be local and low level, which are largely shared
across different domains. In general, dataset restoration with an
auxiliary dataset is already effective and a budget option, while
a privileged dataset without domain shift is more effective, but
incurs the additional cost of collecting it.

V. EXPERIMENTS

A. Experimental settings

Datasets. We evaluate our methods on three datasets:
Cityscapes [59] is a popular dataset in autonomous driving,

and contains 5000 street images (2975/500/1525 for train-
ing/validation/test sets) of which training and validation have
pixel-level segmentation maps annotated with 19 different
concepts, including objects and “stuff”. We use the annotated
sets to train (training set) and evaluate semantic segmentation
(validation set). It also contains another 20000 images with
coarse annotation. We ignore these annotations and use a
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subset of 2000 images to train the deep image compression
model (i.e. MSH [10]) and the image restoration methods.

INRIA Aerial Images Dataset [60] contains aerial images of
diverse urban settlements with segmentation maps with two
classes (building and background). The dataset consists of
aerial images from 10 cities with 36 images per city. Annota-
tions are provided for 5 of these cities and the segmentation
models were trained on 4 cities and evaluated on 1 from these.
The images from the other 5 cities were used for compression
and restoration.

Semantic Drone Dataset [61] contains 400 high resolution
images captured with an autonomous drone at an altitude
of 5 to 30 meters above ground, and their corresponding
annotated segmentation maps (20 classes). The 400 publicly
released images were resized from a resolution of 6000x4000
to 3000x2000. The segmentation models were trained on 265
images and evaluated on 70 images while the remaining
65 images were used for the compression and restoration
models. Each image was further split into 12 patches each
with dimension of a 1200x800. All metrics are calculated on
these patched images.

Compression methods. We use two state-of-the-art image
compression methods. The Better Portable Graphics (BPG)
format [7] is based on a subset of the video compression stan-
dard HEVC/H.265 [8] and is the state-of-the-art in non-deep
image compression. The Mean Scale Hyperprior (MSH) [10],
[13] is a state-of-the-art deep image compression method,
based on an autoencoder whose parameters are learned to
jointly minimize rate and distortion at a particular tradeoff
λ, i.e. minR + λD. MSH models were pretrained for 600k
iterations on the CLIC Professional Dataset5 with MSE loss.
Appendix A contains details of the model architecture.

Restoration methods. Our adversarial restoration architec-
ture for the proposed dataset restoration method is based on
FineNet [62]. FineNet is an adaptation of Pix2PixHD [55], a
popular GAN architecture used for a broad range of image-
to-image translation problems. Refer to Appendix B for
more details. Further, when comparing adversarial and non-
adversarial approaches, we use Residual Dense Network [29]
(Appendix C) as a representative method of non-adversarial
restoration.

Segmentation. For the downstream task we use the state-of-
the-art semantic segmentation method DeepLabv3+ [63]. The
model is trained using the same procedure mentioned in the
paper. We use an output stride of 16 and perform single scale
evaluation.

Metrics. The quality of the inferred semantic segmentation
map is evaluated using the mean intersection over union
(mIoU, the higher the better). For image compression we
measure rate in bits per pixel (bpp, the lower the better) and
the distortion in PSNR (in dB, the higher the better).

B. Cityscapes

Rate-distortion curves. We first characterize the rate-
distortion performance and the tradeoff for the two com-
pression methods in our experiments, and the impact of the

5https://www.compression.cc/2019/challenge/

Fig. 6. Rate-distortion curves for Cityscapes for BPG and MSH, and with
and without adversarial image restoration.
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Fig. 7. Segmentation performance on Cityscapes for different training/test
configurations.

proposed restoration approach on them (see Fig. 6). The curves
sweep the whole range, from low to high quality images. As
expected, the distortion decreases (PSNR increases) with rate.
We observe that MSH performs significantly better than BPG
on Cityscapes, i.e. it produces images with lower average
distortion at similar rate. Due to the perception-distortion
tradeoff, restoration leads to increase in the average distortion,
which can be observed in Fig. 6. Interestingly, once the images
are restored, images compressed with MSH have marginally
higher distortion than those compressed with BPG.

Segmentation performance. We evaluate the segmentation
performance under seven different configurations (i.e. OO, CO,
RO, AO, CC, OC and OR). The results are shown in Fig. 7.

For the Cityscapes dataset, we observe that the model with
configuration CO outperforms the model with configuration
CC which shows that correcting covariate shift by compres-
sion before inference can potentially result in lowering the
performance. Table II shows the performance per class. We
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TABLE II
PER CLASS SEGMENTATION PERFORMANCE FOR THE CONFIGURATIONS OO, CO, RO, AO AND CC.
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) 0.0419 97.27 78.29 90.13 28.36 49.32 90.31 51.83 94.33 93.91 76.13 77.56 48.08 77.94 54.00 52.55 70.39 58.80 59.20 72.95 63.69 72.96 69.55
0.0613 97.50 79.98 91.11 32.74 50.31 91.08 57.65 93.98 94.41 77.82 84.76 65.35 79.22 57.76 61.15 73.32 59.46 62.39 73.63 66.70 76.39 72.82
0.0891 97.93 82.79 91.44 34.13 53.66 91.40 58.81 94.63 94.72 78.28 78.73 42.79 80.47 58.48 62.29 75.07 62.28 64.41 76.03 68.43 74.94 72.54
0.1279 97.77 82.15 91.83 40.36 55.53 91.75 59.48 94.67 94.80 80.08 87.80 75.28 81.16 60.36 63.99 75.34 62.49 65.16 77.20 69.39 79.29 75.64

C
C

(M
SH

) 0.0419 97.17 76.68 89.12 50.18 42.21 88.57 51.99 94.31 92.58 73.95 77.13 56.96 71.46 50.95 43.81 64.12 52.25 53.30 66.97 57.55 74.24 68.09
0.0613 97.56 79.99 90.26 51.93 46.02 89.96 59.22 94.53 93.52 77.54 81.73 52.43 74.54 54.46 52.66 68.12 55.70 56.76 70.41 61.81 76.22 70.91
0.0891 97.70 81.17 91.03 48.93 49.88 90.82 58.53 94.83 94.18 78.69 78.60 43.80 76.86 54.80 55.03 71.61 58.81 60.41 73.77 64.47 75.68 71.55
0.1279 97.84 82.24 91.62 53.64 52.42 91.41 59.93 94.75 94.34 77.05 88.14 72.19 78.95 60.26 60.45 73.17 60.27 63.29 75.48 67.41 79.63 75.13
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SH

) 0.0419 97.44 79.04 90.81 44.23 47.51 90.43 56.46 94.52 94.32 81.46 84.22 61.96 76.85 55.17 55.54 70.97 56.35 59.16 71.67 63.67 76.87 72.01
0.0613 97.62 80.62 91.45 51.81 51.82 91.06 57.77 94.61 94.37 76.96 86.44 77.55 77.94 57.34 59.61 73.13 59.39 61.50 74.38 66.18 79.34 74.49
0.0891 97.57 80.62 91.83 50.42 55.02 91.53 58.70 94.90 94.77 79.81 84.40 63.53 79.35 58.43 63.62 75.04 60.99 63.85 75.62 68.13 78.59 74.74
0.1279 97.42 80.44 92.01 52.22 55.05 91.80 59.92 94.93 95.07 82.16 83.85 63.37 80.23 58.78 63.35 74.88 62.23 65.63 76.60 68.82 79.02 75.26
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) 0.0419 97.67 80.85 91.40 51.17 49.80 91.07 59.97 94.87 94.30 80.74 86.69 70.06 77.95 57.76 61.35 72.64 58.87 61.37 73.47 66.20 79.05 74.32
0.0613 97.97 83.22 91.90 54.29 53.18 91.55 61.23 94.86 94.45 76.28 82.31 68.31 78.98 57.71 62.51 74.65 60.96 63.92 75.60 67.76 79.13 74.94
0.0891 97.77 82.23 92.28 55.29 57.61 92.04 61.96 94.91 94.99 81.59 86.45 69.66 80.28 60.05 63.24 75.57 61.83 65.48 76.75 69.03 80.57 76.31
0.1279 97.77 82.38 92.43 53.87 56.75 92.23 62.40 95.00 95.09 79.92 88.71 74.90 80.84 60.46 66.08 76.59 63.57 67.00 77.61 70.31 80.96 77.03

C
O

(B
PG

) 0.0454 97.49 79.67 90.34 35.84 48.22 90.73 55.80 94.03 93.87 75.86 81.80 60.63 77.44 55.50 61.08 71.01 56.55 59.69 72.75 64.86 75.36 71.49
0.0674 97.72 81.54 91.27 41.55 51.88 91.23 59.61 94.77 94.36 75.77 82.64 59.23 79.19 58.28 58.26 72.98 59.39 62.70 75.16 66.56 76.80 73.03
0.0870 97.98 83.15 91.33 44.33 52.73 91.42 58.81 94.90 94.46 75.11 81.91 58.77 79.82 58.48 62.55 74.21 59.75 62.04 75.46 67.47 77.08 73.54
0.1279 97.87 83.10 92.06 51.82 56.04 91.94 60.49 95.11 94.62 80.75 87.25 75.90 80.60 60.60 63.86 74.68 62.29 65.56 76.95 69.22 80.58 76.39

C
C

(B
PG

) 0.0454 97.03 76.14 88.66 41.33 42.06 88.48 53.96 94.08 92.54 72.33 76.42 55.60 70.82 50.47 48.80 63.93 51.06 53.41 66.92 57.92 73.22 67.58
0.0674 97.46 79.06 90.15 47.74 47.00 89.68 57.99 94.42 93.27 72.14 79.84 59.16 74.33 53.64 48.00 67.46 55.30 57.01 70.92 60.95 75.66 70.24
0.0870 97.58 80.22 90.50 47.41 47.20 90.25 58.40 94.54 93.58 75.20 83.35 57.80 75.77 54.76 52.58 69.71 56.64 57.73 72.09 62.75 76.34 71.33
0.1279 97.71 81.28 91.35 49.49 52.74 91.10 58.25 94.82 94.16 73.89 88.41 70.80 78.11 58.23 58.27 72.40 59.67 61.75 74.68 66.16 78.67 74.06

A
O

(B
PG

) 0.0454 97.51 79.73 91.04 45.38 48.27 90.81 57.10 94.55 94.36 81.44 85.13 74.56 77.34 56.23 58.89 72.52 57.51 61.33 72.30 65.16 78.25 73.47
0.0674 97.67 81.13 91.86 54.33 54.61 91.40 57.30 94.82 94.46 82.53 84.56 63.39 78.86 57.97 58.46 73.55 60.17 63.75 74.09 66.69 78.99 74.47
0.0870 97.42 80.18 91.89 53.25 51.30 91.65 59.39 94.65 94.64 78.62 85.76 69.54 79.71 59.47 59.62 74.63 61.01 63.92 75.82 67.74 79.02 74.87
0.1279 97.70 81.86 92.04 48.35 52.93 91.94 62.68 95.03 94.91 81.08 88.30 71.81 80.72 60.90 64.78 75.66 62.09 65.61 77.13 69.56 79.89 76.08

R
O

(B
PG

) 0.0454 97.78 81.69 91.52 50.05 52.45 91.24 56.78 94.97 94.18 78.88 86.13 73.22 77.88 56.31 62.19 73.15 59.39 62.81 74.47 66.60 79.07 74.48
0.0674 97.95 82.89 91.84 48.17 52.14 91.57 59.47 94.85 94.53 78.86 85.97 76.59 79.37 58.51 62.00 74.07 60.90 65.14 75.25 67.89 79.57 75.27
0.0870 97.71 81.73 92.13 52.62 54.76 91.75 56.93 94.82 94.81 83.52 88.36 78.94 80.10 59.45 62.72 74.63 62.07 64.93 76.44 68.62 80.67 76.23
0.1279 97.58 81.57 92.54 53.23 58.71 92.05 61.16 94.85 95.05 79.79 85.14 69.27 80.91 60.34 64.78 76.11 63.11 66.83 77.84 69.99 80.08 76.36

OO
(PNG) 9.02 98.17 85.04 92.84 54.96 61.15 92.63 64.62 95.05 95.50 85.62 87.02 70.18 82.57 63.08 66.79 78.00 64.95 69.70 78.69 71.97 81.90 78.24

see that the mIoU of classes representing small objects6 is
significantly lower in the configuration CC when compared
to CO. Since smaller objects are relatively easier to lose by
compression, the observation confirms that the introduction of
semantic information loss in the test set from the process of
compression before inference is responsible for the decrease
in performance.

The proposed dataset restoration approach, RO is able to
improve 1.4-4.8% on the configuration CO, and we achieve
close to optimal performance (77% mIoU) requiring only
0.13 bits per pixel. Thus, lossy compression can result in
huge storage savings during data collection when compared to
lossless image compression. For the same budget required to
collect the 2975 training images with MSH at 0.13 bpp, using
lossless compression (PNG in our experiments, resulting in 9
bpp) we would have collected only 42 images, which is clearly
insufficient to train the segmentation network. Furthermore, for
the same performance, dataset restoration effectively reduces
the required budget (for example, configuration CO achieves
75.64% with 0.128 bpp, while RO approximately requires
around 0.07 bpp).

So far in this section we have considered the availability
of privileged data. This allowed us to avoid any domain
shift effects that arise when restoration network is trained

6We consider classes person, rider, motorcycle, bicycle, pole, traffic light,
traffic sign as small objects and the remaining classes as big objects.

with auxiliary data. In the following subsections, however, we
consider different training sets for restoration.

Restoration network (auxiliary data). As described in
Section IV, we train the restoration network with an auxiliary
dataset to evaluate the effectiveness of dataset restoration
when privileged data is not available. We use the images
from the front center camera of the Ford Multi-AV Seasonal
Dataset [64] as auxiliary dataset.

Note that, while both being driving datasets, there exist
many differences between the Ford dataset and the Cityscapes
dataset. Cityscapes is a rich and diverse dataset collected from
multiple cities in Germany. The images in the Ford dataset are
obtained by driving a car along a single route in Michigan,
USA and hence it lacks diversity. The camera sensors and the
resolution of the images differ as well.

The configurations AO, RO, CO and CC are compared in
Fig. 7 and Table II. Despite all the aforementioned differences
between the datasets, we observe only a small decrease in
terms of performance when AO is compared to RO. The
configuration AO still performs significantly better than the
baselines, CO and CC. Note that the results for AO depend
on the auxiliary dataset collected which could be improved
with a better auxiliary dataset.

Amount of privileged data. Since collecting privileged
data is expensive, the amount of collected images is an
important factor. This privileged data is readily available in the
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Fig. 8. Performance of models with different configurations obtained by
varying the amount of privileged data.

server side, and could be leveraged to train the segmentator,
restoration network or both. In the following experiments, we
consider three different amounts of privileged data, 12.5%
(373 images), 25% (745 images) and 50% (1489 images) of
the size of the segmentation dataset (2975 images).

First, we evaluate the segmentation network trained solely
with different amounts of original images from the privileged
dataset. These configurations are oO - 12.5%, oO - 25% and
oO - 50%.

Next, we train the restoration network with the three dif-
ferent amounts of privileged data mentioned above. The seg-
mentation network is then trained on the images obtained after
restoring the compressed data using the respective restoration
models. These configurations are rO - 12.5% (373 images),
rO - 25% (745 images) and RO (1489 images)7.

Fig. 8 shows the results for the various configurations
mentioned above. For all the different amounts of privileged
data considered, dataset restoration is able to improve the
performance over CO. When the privileged data collected is
12.5% of the original images, the original images themselves
are insufficient to provide a good performance as the config-
uration rO - 12.5% performs better than oO - 12.5% at all
rates. When 25% privileged data is available, the picture is a
bit different. At low bitrates, training the segmentation network
with privileged data is sufficient, while at higher bitrates
restoration is beneficial. At rates greater than 0.087 bpp, rO -
25% performs better than oO - 25%. However, when privileged
data is available in copious amounts (e.g. 50%), restoration
performs worse even at high bitrates and privileged data can
be directly used for training the segmentation network. Thus,
to understand the benefits of restoration better, we consider
training the segmentation network with both restored and
original images, and then compare the data collection cost
against segmentation performance for all the configurations in
the following subsections.

7The configuration RO is the same as rO - 50%.

TABLE III
SEGMENTATION PERFORMANCE OF HYBRID TRAINING SETS COMPARED

AGAINST OTHER CONFIGURATIONS.

Compression method CO rO o+c O o+r O

MSH at 0.0419 bpp 69.55 74.07 75.96 73.99
MSH at 0.0891 bpp 72.54 75.69 77.08 75.88

BPG at 0.0454 bpp 71.49 72.32 74.42 73.98
BPG at 0.0674 bpp 73.03 74.01 75.87 76.12
BPG at 0.0870 bpp 73.54 75.15 75.98 76.67

The original images form 12.5% of all mixtures and the configuration oO
results in a performance of 71.90. The IoU of the Train class affects the

mIoU dramatically affects BPG at 0.0454 bpp. When Train class is excluded
from mIoU, the values for o+c O and o+r O become 74.59 and 74.96.

Hybrid training sets. Since privileged and compressed
images are available in the server, we now consider hybrid
training sets for the segmentation network where 12.5% of
the images (373 images) are privileged and the remaining
are compressed or restored, and evaluate on original images
(configuration o+c O or o+r O, respectively). Since we intend
to evaluate the segmentation network on original images, we
emphasize the contribution of the original images in the loss
during training in order to achieve a higher performance. For
all the experiments reported in Table III, the loss from original
images and compressed (or restored) images are weighed in
the ratio of 5:1 (empirically determined).

We observe that the models trained with hybrid training sets
perform better than the individual components of the mixture;
i.e., configuration o+c O performs better than CO and oO
while o+r O performs better than oO and rO. Between the
models of the two mixtures, we see that dataset restoration can
still help performance in the case of BPG. For MSH, dataset
restoration may not be necessary.

Segmentation performance vs. data collection cost. This
work is motivated by the need to reduce the data collection
cost. However, privileged, compressed and auxiliary images
have different costs associated with their collection (high,
medium-low, and zero, respectively). In order to provide a
complete picture, in Fig. 9, we plot the performance of all
the configurations considered thus far against the total cost
involved in collecting the required data (for training restoration
and segmentation networks). The cost is reported in terms of
the percentage of the total cost for the OO configuration. We
see that in the low cost region (≤ 1%), dataset restoration with
auxiliary data provides the best performance, since auxiliary
data involves no cost. When a higher performance is needed,
privileged data needs to be collected and thus a higher cost is
incurred. In such cases, the cost due to the rate of compression
is dominated by the cost in collecting the privileged data.
Hybrid training sets, particularly o+c O with MSH and o+r
O with BPG, result in the best performance in the high cost
region. When the budget is very high (e.g. 50% or higher),
lossless compression can be directly used to collect images,
although our motivation in the first place is precisely to avoid
those very high budget requirements.

Adversarial vs. non-adversarial restoration. In order to
show the connection between perceptual index and adversarial
image restoration, we compute the perceptual index of the
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Fig. 9. Segmentation performance of each configuration against cost of collecting data. Marker size indicates rate.

TABLE IV
PERCEPTUAL INDICES OF DIFFERENT IMAGE SETS.

Restoration type

Compression method Original Compressed Adversarial Non Adversarial
RDN - P RDN - M

MSH at 0.0419 bpp 40.21 55.69 40.56 55.40 55.82

BPG at 0.0674 bpp 40.21 52.95 41.10 53.69 53.62

RDN - P and RDN - M stand for RDN (PSNR) and RDN (MS-SSIM)
respectively. The perceptual indices are calculated using the Blind image

quality assessment method of HOSA [65].

Fig. 10. Adversarial dataset restoration vs non-adversarial: While Table IV
describes the average perceptual index of the original, compressed and restored
image sets, this figure shows the distribution of the perceptual index. Dataset
restoration with adversarial image restoration can recover the distribution of
the perceptual indices of the original images, while non-adversarial cannot.

original, compressed and restored images using the blind
quality assessment method HOSA [65] (as described in [57]).
We use Residual Dense Networks [29] as a representative
method of non-adversarial image restoration. RDN is trained
with the objective of increasing the PSNR (RDN - PSNR)
or MS-SSIM [66] (RDN - MS-SSIM). Refer to Appendix C
for more details. Note that adversarial restoration is able to
achieve a perceptual index close to that of the original images
while RDN does not affect the perceptual index significantly.

While the previous experiment shows that adversarial
restoration does improve the perceptual quality of images,
we are ultimately interested in the segmentation task. We

TABLE V
COMPARISON OF ADVERSARIAL RESTORATION AGAINST RDN IN

VARIOUS METRICS.

Compression
method

Evaluation
metric

Restoration type
None Non adversarial Adversarial
(CO) RDN - P RDN - M (RO)

MSH at
0.0419 bpp

mIoU 69.55 71.63 71.82 74.32
PSNR (dB) 33.47 33.67 33.51 31.55

MS-SSIM (dB) 13.43 13.66 13.66 11.87

MSH at
0.0613 bpp

mIoU 72.82 72.39 71.92 74.94
PSNR (dB) 35.00 35.17 35.00 32.86

MS-SSIM (dB) 14.90 15.11 15.10 13.08

BPG at
0.0454 bpp

mIoU 71.49 70.91 69.58 74.48
PSNR (dB) 33.37 34.04 33.62 31.95

MS-SSIM (dB) 12.96 13.58 13.57 11.74

BPG at
0.0674 bpp

mIoU 73.03 73.26 73.96 75.27
PSNR (dB) 34.81 35.56 35.19 33.40

MS-SSIM (dB) 14.31 14.99 14.96 13.01

RDN - P and RDN - M stand for RDN (PSNR) and RDN (MS-SSIM).

Fig. 11. Feature correlation between segmentation features (at a shallow layer)
of the segmentation model trained on raw images. Dataset restoration with
adversarial image restoration can recover the distribution of perceptual index
and segmentation features of the optimal case (OO), while non-adversarial
cannot.
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TABLE VI
INFERENCE TIMES FOR DIFFERENT APPROACHES.

Compression
method

Segment Encode + Decode + Segment
OO / CO / RO CC

MSH 0.64s 0.10s + 0.13s + 0.64s = 0.87s
BPG 0.64s 1.10s + 0.15s + 0.64s = 1.89s

Note that Encode and Decode times for MSH and BPG are measured on a
GPU and a CPU respectively. Segmentation time is measured on a GPU.

use the model trained with the original images and extract
features from a shallow layer. Features are obtained from
original images, compressed images and restored images for
comparison. As compression affects the low-level information
in images by degrading the texture, adding blur and other
alien artifacts, a shallow layer is selected to observe how
these low-level differences between the images are reflected in
semantic features. Since we only use one model, all features
are aligned in the channel dimension. We want to measure
the level of alignment in activation, so we plot the average
activation (over the validation set of Cityscapes) value for
each channel of original, compressed or restored versus the
original one (see Fig. 11). Obviously, the points corresponding
to original images lie on the identity line, while many channels
from compressed images are clearly not aligned. Adversarial
restoration manages to bring back the features to the identity
line, while non-adversarial restoration has little effect. This
shows that adversarially restored images are not only percep-
tually closer to the real images, but also semantically more
correlated.

Further, Table V compares the performance of different
restoration methods in the configuration RO. Along with
segmentation performance in terms of mIoU, distortion mea-
sures of PSNR and MS-SSIM8 are also reported. Adversarial
restoration results in a far better segmentation performance
when compared to RDN.

Efficiency. Table VI reports the inference times for different
configurations. The time for encode-decode times for MSH
and the segmentation time for DeepLabv3+ were measured
on a Quadro RTX6000 GPU, while the encode-decode times
for BPG was measured on a Intel Xeon(R) E5-1620 v4 CPU9.
Inference using dataset restoration (configuration RO) is faster
than compression before inference (configuration CC) by 26%
and 66%, when the compression method used is MSH and
BPG respectively.

C. INRIA Aerial Images Dataset

Segmentation performance. Fig. 12 depicts the segmen-
tation results obtained on the INRIA Aerial Images Dataset
(AID) for the same six configurations mentioned in Section
B. We observe that the model with configuration CO performs
better than CC when the compression method used is BPG.
However, the same cannot be said for MSH. We hypothesize

8MS-SSIM (dB) is calculated from the standard MS-SSIM value (range [0,
1]) as follows: MS-SSIM (dB) = −10 log10(1− MS-SSIM). MS-SSIM is
presented in terms of this logarithmic scale for better distinction.

9We used the software implementation of BPG from
https://github.com/mirrorer/libbpg using the default options.
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Fig. 12. Segmentation performance on INRIA Aerial Images Dataset for
different training/test configurations.

that the smoothing artifacts caused when MSH is used destroy
the discriminative features and a segmentation model capable
of taking advantage of these features in the original image,
cannot be learnt. This is especially critical with the AID since
there are only a few features that discriminate a building from
the background.

The proposed approach of RO performs consistently better
than both these configurations with gains up to 3.9 % mIoU.
Fig. 13 shows a portion of an image from the dataset along
with the segmentation maps predicted by various models.

Interestingly, contrary to the results on the Cityscapes
dataset, the performance of configuration OR does not improve
over OC. This suggests that the process of restoration causes
further damage (over compression) to the discriminative fea-
tures used by the model trained on the original images for its
prediction.

D. Semantic Drone Dataset

Segmentation performance. The segmentation results ob-
tained on the Semantic Drones Dataset (SDD) are shown in
Fig. 14. We observe that the models with configuration CC
outperform CO consistently for both MSH and BPG. We
attribute this result to the lack of semantic information loss in
this dataset. A typical object from the SDD covers a significant
portion of the image and compression does not significantly
affect its recognizability. When we assume little to no semantic
information loss, the effects of covariate shift are dominant
and as such, the configuration CC performs better. This result
shows that the performance of various configurations are
dependent on the properties of the dataset.

The proposed approach of RO performs similarly to config-
uration CC and lies within ±1.5% mIoU of the configuration
CC. The lack of significant semantic information loss in SDD
affects the effectiveness of dataset restoration.

VI. CONCLUSIONS

The rapid development in sensor quality and increasing
data collection rate makes lossy compression necessary to
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Fig. 13. Top: (from left to right) - captured image, compressed (BPG), restored (BPG), compressed (MSH), restored (MSH). Bottom: Prediction map and
accuracy score of segmentation models with different configurations.
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Fig. 14. Segmentation performance on Semantic Drones Dataset for different
training/test configurations.

reduce transmission and storage costs. By means of dataset
restoration, we enable the incorporation of lossy compression
for on-board analysis, greatly mitigating the drop in perfor-
mance. Dataset restoration is a principled approach, based on
our analysis of the various scenarios involving learning and
inference with compressed images. Our analysis framework
involving covariate shift and semantic information loss can be
further extended to other degradations like blur, noise, color
and illumination changes, etc.

APPENDIX A
MEAN SCALE HYPERPRIOR

Fig. 15 describes the architecture of the MSH [13] used in
this paper.
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Fig. 15. MSH Architecture: Refer to [13] for details on Fully Factorized
Entropy Model and Range Encoder-Decoder.

APPENDIX B
ADVERSARIAL IMAGE RESTORATION

We use the FineNet from Akbari et. al [62] (adapted
from [55]) with slight changes for our image restoration
module.

Following the same notation in [62], the generator ar-
chitecture is written as c64, d128, d256, d512, 9 ×
r512, u256, u128, u64, o3 where
• ck: Conv: 7 × 7 x k, Instance Normalization, ReLU
• dk: Conv: 3 x 3 x k / ↓ 2, Instance Normalization, ReLU
• rk: Conv: 3 x 3 x k, Reflection padding, Instance Nor-

malization, ReLU
• uk: Conv: 3 x 3 x k / ↑ 2, Instance Normalization, ReLU
• o3: Conv: 7 x 7 x 3, Instance Normalization, Tanh
We use two discriminators, as in [62], operating at two

different scales. Akbari et al. rescale the image to half the
resolution while we don’t. The discriminators act on the
original resolution, H × W and H/4 × W/4 resolution.
Again following notation in [62], the discriminators have the
following architecture, C64, C128, C256, C512, O1, where
• Ck: Conv: 4 x 4 x k / ↓ 2, Instance Normalization,

LeakyReLU
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• O1: Conv: 1 x 1 x 1
Let the captured image be x. The restored image, x̄ is

obtained by adding the residual computed by the generator
to the compressed image,

x̄ = x̂+G(x̂).

All images are scaled to [−1, 1].
The loss function used for training are as follows:
• Generator, G:

L
(G)
GAN + 10 · (2 · L1 + LV GG + LMS−SSIM + LDIST )

• Discriminator, Di: L
(Di)
GAN

L
(G)
GAN is the sum of the standard GAN loss from each of

the discriminator, i.e.

L
(G)
GAN =

2∑
i=1

− log(Di(x̂, x̄)).

L1 = ‖x̄− x‖1 .

LMS−SSIM = MS-SSIM(x̄, x).

Let VGG denote a VGG-Net trained on the ImageNet
dataset and Mj denote the size of the output of the jth layer
of VGG. The output of each of the 5 convolution blocks are
considered for the VGG feature distillation loss, which is given
by

LV GG =

5∑
j=1

1

Mj

∥∥∥V GG(j)(x̄)− V GG(j)(x)
∥∥∥
1
.

Similarly, the features of the discriminators are also distilled
for stable GAN training.

LDIST =

2∑
i=1

4∑
j=1

1

N
(i)
j

∥∥∥D(j)
i (x̂, x̄)−D(j)

i (x̂, x)
∥∥∥
1
.

The discriminators are trained using the standard GAN loss.

L
(Di)
GAN = log(1−Di(x̂, x̄)) + log(Di(x̂, x)).

We use a batchsize of 1 and train the GAN for around
135k iterations. Adam optimizer with β1 = 0.1 and β2 = 0.9
is employed. Initially, the learning rate is set to 0.0002 and is
reduced by a factor of 10 after 80k iterations.

APPENDIX C
RESIDUAL DENSE NETWORK

We use the RDN architecture from [29]. We ask the reader
to refer to the paper for the architecture. The following
hyperparameters are used: Global layers = 16, Local layers
= 6, Growth rate = 32.

We train the CAR model with the objective of maximising
MS-SSIM or PSNR. The models are trained using 256x256
patches. A mini-batchsize of 1 is used and the model is trained
for around 200k iterations. Adam optimizer is used with initial
learning rate of 0.001 which is reduced by a factor 10 at 80k
and 150k iterations.
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