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Data collection for onboard perception
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The more images, the better model (in principle)



Data collection for onboard perception
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Distributed data collection
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Distributed data collection

Car side Server side

Analysis 
module

Training

Analysis 
module

Analysis 
module

Test

Deployment

Original images

Compressed images



Training images vs test images 
Training (original) Test (compressed)



Training images vs test images 
Training (compressed) Test (original)



Training images vs test images 

Training (compressed) Test (original)

Observation 1: training and test distributions are different (covariate shift)

Observation 2: training images have less information than test images
(loss of information)

Configuration CO: 
compressed/original



Training/test configurations
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Effect on downstream task

Training Test

OO (ideal)

CO

CC

CC
65

OO

80

Se
gm

en
ta

ti
o

n
 m

Io
U

(%
)

75

70

Training/test
CO

Cityscapes

C
om

p
re

ss
io

n

Conclusion (this dataset): better to 
keep more information in test than 

reduce the covariate shift



Proposed approach: dataset restoration
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Training images vs test images 

Original RestoredCompressed



Training images vs test images 

Original RestoredCompressed



Effect on downstream task
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Why does it work?
- Alleviates the covariate shift
- Keeps useful information for segmentation (e.g. texture)
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Experiments. Rate-distortion
Dataset: Cityscapes. Codecs: BPG (traditional), MSH (neural)

Restoration harms R-D performance
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Experiments. Rate-distortion
Dataset: Cityscapes. Codecs: BPG (traditional), MSH (neural)

Restoration improves segmentation performance

Baseline 
(CO)

Restoration 
(RO)



Adversarial vs non-adversarial restoration

Restoration must be adversarial



Perception-distortion tradeoff

Perception seems to be more 
important than distortion for 
downstream tasks



Cost of collecting data



Thanks!

S. Katakol, B. Elbarashy, L. Herranz, J. van de Weijer, A. M. Lopez, “Distributed Learning 
and Inference with Compressed Images”, IEEE Transactions on Image Processing, 2021

https://arxiv.org/abs/2004.10497

https://arxiv.org/abs/2004.10497

