Practical image and video compression with deep neural networks

Luis Herranz

Computer Vision Center Universitat Autònoma de Barcelona

March 2022

Outline

- Introduction: image/video coding
- Compression with neural networks
- Towards practical image compression
- Visual quality: perception vs distortion
- Video restoration and applications

Outline

- Introduction: image/video coding
- Compression with neural networks
- Towards practical image compression
- Visual quality: perception vs distortion
- Video restoration and applications

The visual communication problem

The visual communication problem

Error

Pre/post-processing, source coding and channel coding

Source coding only

Developing traditional image/video codecs

... for practical applications

Transform coding pipeline

Example: block-based transform coding (e.g. JPEG, MPEG-2, H.264)

Transform coding pipeline: JPEG

Slide partly adapted from T. Wiegand

Coding video: temporal redundancy

Estimate current frame from previous coded ones

Motion-compensated prediction

Try to align frames: find most similar blocks in the reference frame

Motion-compensated video coding

Outline

- Introduction: image/video coding
- Compression with neural networks
- Towards practical image compression
- Visual quality: perception vs distortion
- Video restoration and applications

Neural image codecs

Coding tools and syntax are parametric and learned
Encoders/decoders and probability models deep neural networks

Neural image compression

Autoencoder

Training data

Neural image compression

Balle et al. End-to-end Optimized Image Compression, ICLR 2017 Theis et al., Lossy Image Compression with Compressive Autoencoders, ICLR 2017

Typical pipeline

Compressive autoencoder (CAE) [Theis2017, Balle2017] (autoencoder+quantization+entropy coding)

Architecture (training)

Use differentiable proxies for end-to-end training

Model parameters $\psi = (\theta, \phi, \nu)$ Loss $J(X^{tr}, \psi; \lambda) = R(X^{tr}, \psi) + \lambda D(X^{tr}, \psi)$ Optimization problem $\psi^* = \min_{\psi} J(X^{tr}, \psi; \lambda)$

Training data X^{tr}

Autoencoder architecture

Balle et al. [ICLR2017]

Autoencoder architecture

Balle et al. [ICLR2017]

Generalized divisive normalization (GDN) [Balle2016]

$$\hat{y}_i = \frac{y_i}{\left(\beta_i + \sum_j \gamma_{ij} \, y_j^2\right)^{1/2}}$$

Learnable parameters

Rate-distortion tradeoff λ

Traditional video compression

Replace modules by trainable neural networks

Current frame

Neural video compression

Replace modules by trainable neural networks

Current frame

Outline

- Introduction: image/video coding
- Compression with neural networks
- Towards practical image compression
- Visual quality: perception vs distortion
- Video restoration and applications

Rate-distortion tradeoff λ

Problems: total memory, total training time

[SPL2020] <u>Variable Rate Deep Image Compression with Modulated Autoencoder</u>, Signal Processing Letters 2020 [CVPR2021] <u>Slimmable compressive autoencoders for practical imaga compression</u>, CVPR 2021 [CLIC2021] <u>DANICE: Domain adaptation without forgetting in neural image compression</u>, CLIC 2021 at CVPR 2021

Variable rate with modulated autoencoders

Objective: one single model for multiple λ

CAE: conditional autoencoder [Choi2019] MAE: modulated autoencoder [Yang2020]

Model capacity and rate-distortion

Slimmable compressive autoencoder

Approach: slim the network to the minimal capacity for a given λ

- Minimize rate
- Minimize distortion
- Variable rate
- Lower memory
- Lower computation
- Lower latency

(for low-mid rates)

Slimmable layers in SlimCAE

SlimCAE

Slimmable layers in SlimCAE

 $W\in [W_1, W_2, W_3]$ SlimConv SlimIGDN SlimConv SlimIGDN SlimConv SlimIGDN SlimGDN SlimConv SlimGDN SlimConv SlimGDN SlimConv

SlimCAE

Slimmable layers in SlimCAE

Training SlimCAE

Slimmable compressive autoencoders for practical imaga compression, CVPR 2021

Problem: extremely expensive!

models

Training SlimCAE

Slimmable compressive autoencoders for practical imaga compression, CVPR 2021

Problem: extremely expensive!
Training SlimCAE

Problem: we need the optimal λs to train the SlimCAE

models Problem: extremely expensive!

Slimmable compressive autoencoders for practical imaga compression, CVPR 2021

Training SlimCAE

Directly train one model!

w=192

Slimmable compressive autoencoders for practical imaga compression, CVPR 2021

Problem: extremely expensive!

models

λ -scheduling. Example

Slimmable compressive autoencoders for practical imaga compression, CVPR 2021

λ -scheduling

Performance comparison

Visualizing some parameters

Encoder (first conv layer)

Decoder (last conv layer)

Slimmable compressive autoencoders for practical imaga compression, CVPR 2021

Is neural image compression practical?

[SPL2020] <u>Variable Rate Deep Image Compression with Modulated Autoencoder</u>, Signal Processing Letters 2020 [CVPR2021] <u>Slimmable compressive autoencoders for practical imaga compression</u>, CVPR 2021 [CLIC2021] <u>DANICE: Domain adaptation without forgetting in neural image compression</u>, CLIC 2021 at CVPR 2021

Rate-distortion optimality of learned codecs

Learned codecs are only optimal in the domain of the training data

Domain Adaptation in Neural Image ComprEssion (DANICE)

Learned codecs can be **customized with user content** to specific domains Problem: usually **not enough custom data**; training is **expensive** Solution: **transfer pre-trained codecs**

Backward incompatibility with legacy bitstreams: catastrophic forgetting

Misalignment between encoding-decoding latent spaces (i.e. bitstream syntax incompatible)

Rate-distortion forgetting

Codec adaptation without forgetting (CAwF)

Freeze source codec, and learn target codec as an enhancement layer Drawback: adds additional parameters

Codec adaptation without forgetting (CAwF)

CelebA→Cityscapes (source domain)

Codec adaptation artifacts

Outline

- Introduction: image/video coding
- Compression with neural networks
- Towards practical image compression
- Visual quality: perception vs distortion
- Video restoration and applications

Image superresolution

Downsampling (25%)

Upsampling (bicubic 4x)

Note: lossy (lost information can't be recovered)

Image superresolution

Is (MSE/PSNR) distortion a good quality metric?

Bicubic

PNSR 21.59 dB PNSR 23.53 dB PNSR 21.15 dB

SRResNet (MSE) SRGAN

Original

Image quality assessment: full-reference vs no-reference metrics

Perception-distortion in image superresolution methods

Slide adapted from Y. Blau

Perception-distortion in image superresolution methods

Slide credit: Y. Blau

Perception distortion tradeoff

The Perception-Distortion Tradeoff, CVPR 2018

Image restoration problems

Denoising

Dehazing

Deblurring

Slide credit: Y. Blau

What does this have to do with (lossy) compression?

Rate-distortion-perception tradeoff

Rethinking Lossy Compression: The Rate-Distortion-Perception Tradeoff, ICML 2019

Generative lossy compression

Optimize perception using a discriminator and adversarial loss The decoder acts as generator of a conditional GAN

Training data

High-Fidelity Generative Image Compression, NeurIPS 2020

Generative lossy compression

HiFiC: High-Fidelity Generative Image Compression

Generative lossy compression HiFiC (7 kB) vs JPEG (8 kB)

High-Fidelity Generative Image Compression, NeurIPS 2020

Outline

- Introduction: image/video coding
- Compression with neural networks
- Towards practical image compression
- Visual quality: perception vs distortion
- Video restoration and applications

Video quality enhancement

Objectives:

- Ålign several frames
- Combine the aligned information

DCNGAN

Improvements: - Use deformable convoution for alignment - Condition on quantization parameter QP

DCNGAN

<u>Deformable Convolutional Networks</u>, ICCV 2017 <u>DCNGAN: A deformable convolution-based GAN with QP adaptation for perceptual quality enhancement of</u> <u>compressed video</u>, ICASSP 2022

DCNGAN. Examples

Video compression

QP	Sequences		Compressed		MFQE 2.0 [4] LPIPS DISTS		STDF [<mark>5</mark>] LPIPS DISTS		MW-GAN [9] LPIPS DISTS		VPE-GAN [10] LPIPS_DISTS		Proposed LPIPS DISTS	
		T C	0.170	0.014	0.104	0.014	0.004	0.000	0.120	21010	0.170	0.020	0.070	
32	Class A	Iraffic Develop	0.170	0.014	0.184	0.014	0.094	0.009	0.138		0.179	0.029		0.006
	Class B	PeopleOnstreet	0.150	0.018	0.107	0.018	0.155	0.010	0.130		0.135	0.015	0.080	0.008
		Kimono	0.258	0.043	0.294	0.046	0.160	0.026	0.189		0.180	0.034	0.108	0.023
		ParkScene	0.276	0.044	0.286	0.045	0.182	0.027	0.244		0.196	0.037	0.123	0.023
		Cactus	0.260	0.022	0.288	0.022	0.136	0.012	0.151		0.126	0.017	0.096	0.010
		BQTerrace	0.215	0.032	0.241	0.034	0.152	0.021	0.116		0.140	0.040	0.113	0.018
		BasketballDrive	0.247	0.028	0.279	0.031	0.166	0.022	0.141		0.132	0.025	0.099	0.015
	Class C	RaceHorses	0.147	0.066	0.174	0.075	0.120	0.061	0.126		0.101	0.055	0.089	0.042
		BQMall	0.124	0.066	0.145	0.071	0.089	0.050	0.091		0.112	0.063	0.072	0.038
		PartyScene	0.101	0.057	0.126	0.060	0.067	0.042	0.026		0.091	0.045	0.075	0.029
		BasketballDrill	0.156	0.073	0.181	0.079	0.126	0.068	0.109		0.105	0.060	0.072	0.040
	Class D	RaceHorses	0.122	0.121	0.143	0.132	0.098	0.113	0.117		0.093	0.126	0.072	0.091
		BOSquare	0.110	0.150	0.121	0.160	0.084	0.130	0.073		0.066	0.112	0.104	0.123
		BlowingBubbles	0.102	0.117	0.111	0.128	0.068	0.104	0.063		0.072	0.096	0.065	0.084
		BasketballPass	0.116	0.135	0.135	0.150	0.099	0.127	0.095		0.085	0.116	0.067	0.099
	Class E	FourPeople	0.120	0.037	0.128	0.038	0.089	0.022	0.080		0.103	0.028	0.054	0.016
		Johnny	0.148	0.035	0.159	0.035	0.111	0.021	0.083		0.178	0.059	0.063	0.014
		KristenAndSara	0.134	0.038	0.148	0.039	0.106	0.025	0.108		0.136	0.046	0.062	0.019
		Average	0.164	0.061	0.184	0.065	0.116	0.049	0.115		0.124	0.056	0.083	0.039
22		Average	0.077	0.020	0.087	0.022	0.050	0.014			0.097	0.047	0.042	0.017
27		Average	0.116	0.037	0.130	0.040	0.077	0.029	_		0.103	0.054	0.059	0.026
37		Average	0.223	0.089	0.232	0.086	0.168	0.080	0.177		0.148	0.070	0.120	0.058
				0.007	J	5.000	0.100	5.000	5.1.1			5.070		

DConv vs optical flow

Data collection for onboard perception

Distributed Learning and Inference with Compressed Images, IEEE Trans. Image Processing 2021

Data collection for onboard perception

Distortion

The higher the compression rate the more images we can collect

Distributed Learning and Inference with Compressed Images, IEEE Trans. Image Processing 2021

Distributed data collection

Distributed Learning and Inference with Compressed Images, IEEE Trans. Image Processing 2021
Distributed data collection

Training (compressed)

Test (original)

codec: mean-scale hyperprior

Training (compressed)

Test (original)

Training (compressed) Test (original)

Configuration CO: compressed/original

Observation 1: training and test distributions are different (covariate shift) Observation 2: training images have less information than test images (loss of information)

Training/test configurations

Effect on downstream task

Training/test

Proposed approach: dataset restoration

Original

Compressed

Restored

Effect on downstream task

Why does it work?

- Alleviates the covariate shift
- Keeps useful information for segmentation (e.g. texture)

Experiments. Rate-distortion

Dataset: Cityscapes. Codecs: BPG (traditional), MSH (neural)

Experiments. Segmentatin

Dataset: Cityscapes. Codecs: BPG (traditional), MSH (neural)

Adversarial vs non-adversarial restoration

Restoration must be adversarial

Perception-distortion tradeoff

Cost of collecting data

The perceptual index measures the covariate shift wrt the distribution of real images

References

General references

- <u>Balle et al. End-to-end Optimized Image Compression</u>, ICLR 2017
- Theis et al., Lossy Image Compression with Compressive Autoencoders, ICLR 2017
- Blau and Michaeli, The Perception-Distortion Tradeoff, CVPR 2018
- Blau and Michaeli, Rethinking Lossy Compression: The Rate-Distortion-Perception Tradeoff, ICML 2019
- Dai et al., Deformable Convolutional Networks, ICCV 2017
- <u>Mentzer et al., High-Fidelity Generative Image Compression</u>, NeurIPS 2020
- Works by our group and collaborations (with Marta Mrak's group at BBC R&D, London, UK and Shuai Wan's group at Nortwestern Politechnic University, Xi'an, China)
- <u>Yang et al., Variable Rate Deep Image Compression with Modulated Autoencoder</u>, Signal Processing Letters 2020
- Yang et al., Slimmable compressive autoencoders for practical imaga compression, CVPR 2021
- <u>Katakol et al., DANICE: Domain adaptation without forgetting in neural image compression</u>, CLIC 2021 at CVPR 2021
- <u>Zhang et al., DCNGAN: A deformable convolution-based GAN with QP adaptation for perceptual quality</u> <u>enhancement of compressed video</u>, ICASSP 2022
- <u>Katakol et al., Distributed Learning and Inference with Compressed Images</u>, IEEE Trans. Image Processing 2021

THANK YOU!

lherranz@cvc.uab.es www.lherranz.org

