Towards practical neural image compression: SlimCAE and DANICE

Fei Yang, Luis Herranz CVPR 2021/CLIC2021

Outline

- Introduction and motivation
- SlimCAE (CVPR 2021)
- DANICE (CLIC workshop at CVPR 2021)

The visual communication problem

The visual communication problem

Error

Developing traditional image/video codecs

... for practical applications

... for practical applications

... for practical applications

Basic pipeline

Example: block-based transform coding (e.g. JPEG, MPEG-4)

Neural image/video codecs

- Coding tools and syntax are parametric and learned

- Encoders/decoders and probability models are deep neural networks

Neural image compression

Optimize a weighted rate-distortion loss (λ controls the tradeoff)

Neural image compression

Architecture

Compressive autoencoder (CAE) [Theis2017, Balle2017] (autoencoder+quantization+entropy coding)

Architecture (training)

Use differentiable proxies for end-to-end training

Model parameters $\psi = (\theta, \phi, \nu)$ Loss $J(X^{tr}, \psi; \lambda) = R(X^{tr}, \psi) + \lambda D(X^{tr}, \psi)$ Optimization problem $\psi^* = \min_{\psi} J(X^{tr}, \psi; \lambda)$

Training data X^{tr}

Autoencoder architecture

Balle et al. [ICLR2017]

Autoencoder architecture

Balle et al. [ICLR2017]

Generalized divisive normalization (GDN) [Balle2016]

$$\hat{y}_i = \frac{y_i}{\left(\beta_i + \sum_j \gamma_{ij} \, y_j^2\right)^{1/2}}$$

Learnable parameters

Rate-distortion tradeoff $\boldsymbol{\lambda}$

Is neural image compression practical?

Limitations

 $-\lambda$ is fixed

- Heavy encoders/decoders

Practical neural image compression?

X

- Minimize rate
- Minimize distortion
- Variable rate 🛛 🗴
- Low memory 🗴
- Low computation 🗴
- Low latency

Towards **practical** neural image compression

Practical objectives Main objectives MAE Variable rate - Minimize rate [SPL2020] - Minimize distortion Low memory Low computation SlimCAE Low latency [CVPR2021] Other practical considerations Domain-specific codecs DANICE (e.g. videoconference, screencast) [CLIC2021] Backward/forward compatibility (with legacy formats and encoders/decoders)

[SPL2020] <u>Variable Rate Deep Image Compression with Modulated Autoencoder</u>, Signal Processing Letters 2020 [CVPR2021] <u>Slimmable compressive autoencoders for practical imaga compression</u>, CVPR 2021 [CLIC2021] <u>DANICE: Domain adaptation without forgetting in neural image compression</u>, CLIC 2021 at CVPR 2021

Slimmable Compressive Autoencoders for Practical Neural Image Compression

Fei Yang^{1,2,3}, Luis Herranz^{1,2}, Yongmei Cheng³, Mikhail Mozerov^{1,2}

¹Computer Vision Center ²Universitat Autònoma de Barcelona ³Northwestern Politechnical University

CVPR 2021

Universitat Autònoma de Barcelona

Variable rate neural image compression

Objective: one single model for multiple λ

cAE: conditional autoencoder [Choi2019] MAE: modulated autoencoder [Yang2020]

Model capacity and rate-distortion

Slimmable compressive autoencoder

Approach: slim the network to the minimal capacity for a given λ

- Minimize rate
- Minimize distortion 🗸
- Variable rate
- Lower memory
- Lower computation
- Lower latency

(for low-mid rates)

Slimmable layers in SlimCAE

SlimCAE

Slimmable layers in SlimCAE

 $W\in [W_1, W_2, W_3]$ SlimConv SlimIGDN SlimConv SlimIGDN SlimConv (SlimIGDN) SlimGDN SlimConv SlimGDN SlimConv SlimGDN SlimConv

SlimCAE

Slimmable	convolution	[Yu2019]
conv	`````````````````````````````````	
CONV		
COV	nv	

Slimmable layers in SlimCAE

- 3. Estimate optimal λ s from trained models
 - Problem: extremely expensive!

- 3. Estimate optimal λ s from trained models
 - Problem: extremely expensive!

- 3. Estimate optimal λ s from trained models
 - Problem: extremely expensive!

- 2. Plot RD curves and find critical points
- 3. Estimate optimal λ s from trained models
 - Problem: extremely expensive!

- 1. Train a SlimCAE with $\lambda_1 = \lambda_2 = \lambda_3$
- 2. While not converged do
 - Update λ s according to schedule

- w=192

w=128

• Optimize CAE

Directly train one model!

λ -scheduling. Example

λ -scheduling

Performance comparison

0

Thanks!

https://arxiv.org/abs/2103.15726 https://github.com/FireFYF/SlimCAE

Fei Yang

Luis Herranz

Yongmei Cheng Mikhail Mozerov

UNIVERSITAT Autònoma de Barcelona

DANICE: Domain adaptation without forgetting in neural image compression

Sudeep Katakol^{1,(2)}, Luis Herranz^{2,3}, Fei Yang^{2,3,4}, Marta Mrak⁵

¹University of Michigan, Ann Arbor, ²Computer Vision Center, ³Universitat Autònoma de Barcelona, ⁴Northwestern Politechnical University, ⁵BBC R&D

CLIC 2021 (@CVPR 2021)

B Universitat Autònoma de Barcelona

BB

Towards **practical** neural image compression

Main objectives - Minimize rate - Minimize distortion Practical objectives

- Variable rate
- Low memory
- Low computation
- Low latency

Other practical considerations

- Domain-specific codecs
 (e.g. videoconference, screencast)
- Backward/forward compatibility (with legacy formats and encoders/decoders)

DANICE [CLIC2021]

Rate-distortion optimality of learned codecs

Learned codecs are only optimal in the domain of the training data

Domain Adaptation in Neural Image ComprEssion (DANICE)

Learned codecs can be customized with user content to specific domains Problem: usually we don't have enough custom data; training is expensive Solution: transfer pre-trained codecs

Domain adaptation via fine tuning

	$\text{CLIC} \rightarrow \text{CelebA}$			$CLIC \rightarrow Cityscapes$			
Source model	19.24			23.93			
Number of	Naïve		Selective	Naïve		Selective	
target images	fine tuning		fine tuning	fine tuning		fine tuning	
10	19.24		16.46	22.96		17.54	
25	18.76		14.93	18.44		15.79	
50	15.59		13.73	16.29		15.33	

Experiments

BD-rate (reference: training with all target data)

Domain adaptation via fine tuning

Backward incompatibility with legacy bitstreams: catastrophic forgetting

Misalignment between encoding-decoding latent spaces (i.e. bitstream syntax incompatible)

Rate-distortion forgetting

Codec adaptation without forgetting (CAwF)

Freeze source codec, and learn target codec as an enhancement layer Drawback: adds additional parameters

Codec adaptation without forgetting (CAwF)

Codec adaptation without forgetting (CAwF)

CelebA→Cityscapes (source domain)

Codec adaptation artifacts

Thanks!

https://arxiv.org/abs/2103.15726

Sudeep Katakol

Luis Herranz

Fei Yang

Marta Mrak

BBC | Research & Development