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• DANICE (CLIC workshop at CVPR 2021)
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Basic pipeline
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Neural image/video codecs
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- Coding tools and syntax are parametric and learned
- Encoders/decoders and probability models are deep neural networks



Neural image compression
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Optimize a weighted rate-distortion loss

+𝝀𝑅( )01100

𝐷(𝑥, 𝑥)

(𝝀 controls the tradeoff) 

Compressive autoencoder (CAE) [Theis2017, Balle2017]
(autoencoder+quantization+entropy coding)



Neural image compression
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Architecture
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Compressive autoencoder (CAE) [Theis2017, Balle2017]
(autoencoder+quantization+entropy coding)

Feature 
encoder 

Entropy 
encoder

Feature 
decoder 

Entropy 
decoder

Not differentiable!

+𝝀



Architecture (training)

𝑅(𝒳tr, 𝜓)

𝐷(𝒳tr, 𝜓)

Use differentiable proxies for end-to-end training
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𝜓 = 𝜃, 𝜙, 𝜈Model parameters 

𝐽 𝒳tr, 𝜓; 𝜆 = 𝑅 𝒳tr, 𝜓 + 𝜆𝐷 𝒳tr, 𝜓Loss
𝜓∗ = min

𝜓
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Autoencoder architecture

Balle et al. 
[ICLR2017]

GDN

GDN

GDN

IGDN

IGDN

IGDN

Conv

Conv

Conv

Conv

Conv

Conv



Autoencoder architecture

Balle et al. 
[ICLR2017]
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Generalized divisive normalization (GDN) [Balle2016]
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Rate-distortion tradeoff λ
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PSNR= 36.2 dB
Rate= 0.41 bpp

Each RD point is a different 
independent model (λ is fixed)

PSNR= 31.1 dB
Rate= 0.08 bpp



Is neural image compression practical?

Encoder Decoder01100

+𝝀𝑅( )01100

𝐷(𝑥, 𝑥)

Practical neural image compression?
- Minimize rate
- Minimize distortion

✓
✓Limitations

- Variable rate






- Low memory
- Low computation
- Low latency

- Heavy encoders/decoders

- 𝝀 is fixed



Towards practical
neural image compression

Main objectives
- Minimize rate
- Minimize distortion

Other practical considerations
- Domain-specific codecs

(e.g. videoconference, screencast)
- Backward/forward compatibility

(with legacy formats and encoders/decoders)

Practical objectives
- Variable rate
- Low memory
- Low computation
- Low latency

[SPL2020] Variable Rate Deep Image Compression with Modulated Autoencoder, Signal Processing Letters 2020

MAE
[SPL2020]

SlimCAE
[CVPR2021]

[CVPR2021] Slimmable compressive autoencoders for practical imaga compression, CVPR 2021

DANICE
[CLIC2021]

[CLIC2021] DANICE: Domain adaptation without forgetting in neural image compression, CLIC 2021 at CVPR 2021

Encoder Decoder01100

https://arxiv.org/abs/1912.05526
https://arxiv.org/abs/2103.15726
https://arxiv.org/abs/2104.09370
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Variable rate neural image compression
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cAE: conditional autoencoder [Choi2019] 
MAE: modulated autoencoder [Yang2020]



Model capacity and rate-distortion
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Slimmable compressive autoencoder

✓- Variable rate

- Minimize rate
- Minimize distortion

✓
✓

Approach: slim the network to the minimal capacity for a given 𝜆

Slimming [SlimCAE]

- Lower memory
- Lower computation
- Lower latency ✓

✓
✓

(for low-mid rates)
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Slimmable layers in SlimCAE
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Slimmable layers in SlimCAE
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Slimmable convolution [Yu2019]
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Slimmable layers in SlimCAE
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Training SlimCAE
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• Update 𝜆 s according to schedule
• Optimize CAE
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Directly train one model!



𝜆-scheduling. Example
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𝜆-scheduling
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Performance comparison
Independent CAEs

(each with minimal capacity)
Scaling [Theis2017] MAE [Yang2020] cAE [Choi2019] SlimCAE (ours)
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Thanks!

https://arxiv.org/abs/2103.15726

https://github.com/FireFYF/SlimCAE

Fei Yang Luis Herranz Mikhail MozerovYongmei Cheng

https://arxiv.org/abs/2103.15726
https://github.com/FireFYF/SlimCAE
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Towards practical
neural image compression

Main objectives
- Minimize rate
- Minimize distortion

Other practical considerations
- Domain-specific codecs

(e.g. videoconference, screencast)
- Backward/forward compatibility

(with legacy formats and encoders/decoders)

Practical objectives
- Variable rate
- Low memory
- Low computation
- Low latency

DANICE
[CLIC2021]

Encoder Decoder01100



Learned codecs are only optimal in the domain of the training data

PSNR = 29.1 dB

Rate = 0.108 bpp
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𝑓2 𝑔2

𝑅 + 𝜆𝐷

Street 
domain 

𝒳2
tr

PSNR= 27.3 dB

Rate= 0.138 bpp
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Domain Adaptation in Neural Image ComprEssion
(DANICE)

Learned codecs can be customized with user content to specific domains

Source domain 
(e.g. CLIC)

Source model
(off-the-shelf)

Codec 
adaptation

Codec 
adaptation

Adapted codec
to faces

Target domain 
(portrait faces)

Adapted codec 
to driving scenes

Target domain 
(driving scenes)

Problem: usually we don’t have enough custom data; training is expensive
Solution: transfer pre-trained codecs



Domain adaptation via fine tuning

BD-rate
(reference: training 

with all target data)
Experiments

Selective 
fine tuning
(fix convs)

Still too many 
parameters for 
too few images

Source domain 
(e.g. CLIC)

Source model Adapted codec
Naïve fine 

tuning

Few custom images
(e.g. CelebA)



Domain adaptation via fine tuning

Source domain 
(CLIC)

Target domain
(25 images)

CelebA Cityscapes



Misalignment between encoding-decoding latent spaces
(i.e. bitstream syntax incompatible)
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Encoding-decoding latent spaces aligned, but suboptimal
(i.e. bitstream syntax compatible, yet degraded)
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Freeze source codec, and learn target codec as an enhancement layer
Drawback: adds additional parameters
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Codec adaptation without forgetting (CAwF)
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Codec adaptation without forgetting (CAwF)

CelebA➝Cityscapes

Naïve adaptation 
forgets

Source codec 
is suboptimal

Cityscapes➝CelebA

CAwF

CAwF



Codec adaptation without forgetting (CAwF)

CelebA➝Cityscapes
(source domain)

Codec adaptation 
artifacts



Thanks!

https://arxiv.org/abs/2103.15726

Fei YangLuis Herranz Marta MrakSudeep Katakol

https://arxiv.org/abs/2103.15726

